
A fun
tional programming language for quantum
omputationwith
lassi
al
ontrol
ByBenô�t ValironUniversity of OttawaSeptember 2004

A Thesissubmitted to the S
hool of Graduate Studies and Resear
hin partial ful�llment of the requirementsfor the degree ofMaster of S
ien
e in Mathemati
s1

 Copyright 2004by Benô�t ValironUniversity of Ottawa, Ottawa, Canada1The M.S
. Program is a joint program with Carleton University, administered by the Ottawa-Carleton Institute of Mathemati
s and Statisti
s

Abstra
tThe obje
tive of this thesis is to develop a fun
tional programming language forquantum
omputers based on the QRAM model, following the work of P. Selinger(2004) on quantum
ow-
harts. We
onstru
t a lambda-
al
ulus without side-e�e
tsto deal with quantum bits. We equip this
al
ulus with a probabilisti

all-by-valueoperational semanti
s. Sin
e quantum information
annot be dupli
ated due to theno-
loning property, we need a resour
e-sensitive type system. We develop it basedon aÆne intuitionisti
 linear logi
. Unlike the quantum lambda-
al
ulus proposedby Van Tonder (2003, 2004), the resulting lambda-
al
ulus has only one lambda-abstra
tion, linear and non-linear abstra
tions being en
oded in the type system.We also integrate
lassi
al and quantum data types within our language. The mainresults of this work are the subje
t-redu
tion of the language and the
onstru
tion ofa type inferen
e algorithm.

ii

A
knowledgmentsThis resear
h was supported by graduate s
holarships from the fa
ulty of graduatestudies and from the department of mathemati
s.The results were presented at the FMCS 2004
onferen
e in Calgary. A paper iss
heduled to appear in the pro
eedings of QPL 2004.A number of people gave me the opportunity to write this thesis. I hope the oneI forget will forgive me. I express my thanks to the following people:To my supervisor Dr. Selinger for his supervision and his advi
e.To my
ommittee, Drs. Blute and Howe.To Dr. S
ott who gave me the opportunity to do a master in Ottawa.To the administrative sta� from the department and from the international oÆ
e,espe
ially Line Bissonette.To Bob, who helps me to
he
k some of the spelling of this thesis.To Eri
, for having supported me these two years, and to all my Preston- Sweet-land's roommates for pushing me to work ea
h morning.

iii

ContentsAbstra
t iiA
knowledgments iii1 Introdu
tion 12 Quantum programming 62.1 Measurements . 72.2 Unitary operations and quantum
ir
uits 92.3 Entanglement . 112.4 Simulation of a
lassi
al
omputer on a quantum
omputer 122.5 Issues spe
i�
 to quantum
omputers 132.6 Pra
ti
al
onsiderations . 152.7 Examples . 152.8 Models for quantum
omputation . 182.8.1 Quantum
ontrol . 182.8.2 Classi
al
ontrol . 203 Lambda-
al
ulus 223.1 Untyped lambda-
al
ulus . 223.1.1 �-redu
tion . 263.1.2 Redu
tion strategies . 293.2 Typed lambda-
al
ulus . 313.2.1 Properties of typing judgments 333.2.2 Type inferen
e algorithm . 44iv

4 Linear Logi
 555 The quantum lambda-
al
ulus: Terms 595.1 Quantum States . 595.2 Probabilisti
 redu
tion systems . 645.3 Quantum redu
tion . 676 The quantum lambda-
al
ulus: Types 706.1 Subtyping . 716.2 Typing rules . 746.3 Examples . 767 Properties of quantum typing judgments 797.1 Preliminary lemmas . 797.2 Subje
t redu
tion . 867.3 Progress theorem . 898 Extension of the language 908.1 Extended language . 908.2 Cartesian produ
t versus Tensor produ
t 928.3 Compatibility with the previous results 958.4 Examples . 979 Type inferen
e algorithm 1009.1 A �rst example . 1009.2 Synta
ti
 Skeleton . 1019.3 Template . 1129.4 A sub
lass of qType . 1129.5 A polynomial-time de
ision pro
edure 11410 Con
lusion and further work 121Bibliography 122v

List of Tables1 Rules for
onstru
ting quantum
ow-
harts 212 De�nition of the set of free variables 253 De�nition of term-substitution . 264 �-redu
tion rules . 275 Intuitionisti

all-by-value redu
tion strategy 316 Typing rules for the simply-typed lambda-
al
ulus 337 Type inferen
e algorithm for the simply-typed lambda-
al
ulus 508 Derivation rules for intuitionisti
 linear logi
 579 Derivation rules for exponential . 5710 Quantum
all-by-value redu
tion . 6811 Subtyping relation: First set of rules 7112 Subtyping relation: Se
ond set of rules 7313 Typing rules for the quantum lambda-
al
ulus 7514 Extended terms . 9115 Extended types . 9216 Extended typing rules . 9317 Extended
all-by-value redu
tion . 9418 Indu
ed typing rules for skeleton . 104
vi

Chapter 1Introdu
tion13 And God said unto Noah, The end of all
esh is
omebefore me; for the earth is �lled with violen
e throughthem; and, behold, I will destroy them with the earth.14 Make thee an ark of gopher wood; rooms shalt thoumake in the ark, and shalt pit
h it within and without withpit
h. 15 And this is the fashion whi
h thou shalt make itof: The length of the ark shall be three hundred
ubits, thebreadth of it �fty
ubits, and the height of it thirty
ubits.[6 Gen 13-15, King James version℄Ba
kground on quantum
omputation. Quantum
omputing has be
ome a fastgrowing resear
h area in re
ent years, sin
e Shor [22℄ has shown in 1994 that quan-tum
omputers
an fa
tor an integer in polynomial time upon its number of digits.It is not known whether any
lassi
al algorithm
an solve the problem in polynomialtime. The fa
toring problem has numerous impli
ations in
ryptography. In par-ti
ular the most
ommonly used algorithm to en
ode data with a publi
 key is theRSA algorithm, based on the present diÆ
ulty to fa
torize very large numbers [15,p.232℄. Quantum
omputers would stir up the �eld of
ryptography. This dis
ov-ery has fo
used attention on quantum
omputing, whi
h is able to bring
hange inother domains, su
h as database manipulation [15, p.248℄, with algorithms to queryelements in databases, and su
h as numeri
al methods, with the ability to performeÆ
iently Fourier transform [15, p.216℄. 1

CHAPTER 1. INTRODUCTION 2The basi
 idea behind quantum
omputation is to en
ode data using obje
ts gov-erned by the laws of quantum physi
s. In a
lassi
al
omputer, the smallest unit ofdata is the bit. On the other hand, the smaller unit of data in a quantum
omputeris a quantum bit, or qubit. The laws of quantum physi
s give the
onstraints applyingon qubits. Bits and qubits behave in a
omplete di�erent manner. For instan
e, a
lassi
al bit
an be
opied as many times as needed. On the other hand, a quan-tum bit
annot be dupli
ated, due to the well-known no
loning property of quantumstates [17, 15℄. However, quantum data types are
omputationally very powerful,due to the phenomena of quantum superposition and entanglement. A qubit
an bemodeled as a normalized ve
tor in a two-dimensional Hilbert spa
e. To understand itas a pie
e of information, one has to
hoose an orthonormal basis, whi
h we denote as(j0i; j1i). The qubit is then written as �j0i+ �j1i, with j�j2 + j�j2 = 1, and one
anunderstand it as the superposition of the bit 0 and the bit 1. A state of two qubitsis a ve
tor of the tensor produ
t of the two Hilbert spa
es. There are states of theform j�1i
 j�2i, but one
an also write a state of the form 1p2(j00i + j11i). Su
h astate is
alled an entangled state. The operations that one
an perform on a quantumstate are only of two
lasses, namely unitary transformations and measurements. Themeasurement of a qubit a
ts as a proje
tion on one of the basis elements. For a goodgeneral introdu
tion to quantum
omputing, see e.g. [17, 15℄.Ba
kground on fun
tional programming. A fun
tional programming languageis a language where programs are seen as fun
tions: a program is usually a pie
e of
ode that take arguments and return a value. In a higher-order fun
tional program-ming language, every fun
tion is regarded as a value. In that sense one
an speakof a program returning another program. This is a powerful way of understandingprogramming. A model of this kind of
omputation is the lambda-
al
ulus, designedin the 1930's by Chur
h [6℄ and Kleene [12℄. It provides an operational semanti
s fordes
ribing
omputable fun
tions and evaluation. A
omplete referen
e on the subje
tis [2℄.

CHAPTER 1. INTRODUCTION 3The problem. At the moment,
omputation using quantum
omputers is mostlyunderstood as a physi
al pro
ess. Very few programming languages exist for dealingwith this kind of
omputer. Trying to understand the pro
ess of quantum
ompu-tation from the point of view of programming languages
an help to the dis
overyof new appli
ations and to have a better understanding of the semanti
s of su
h a
omputation.Review. Re
all that a quantum system
an evolve by unitary transformations andmeasurements. Many existing models of quantum
omputation put an emphasis onthe former, i.e.,
omputation is understood as the evolution of a quantum state bymeans of unitary gates. In these models, a quantum
omputer is
onsidered as apurely quantum system, i.e., without any
lassi
al parts: Measurements are doneat the end of the experiment, often outside of the formal system. One example ofsu
h a model is the quantum Turing ma
hine [3, 8℄, where the entire ma
hine state,in
luding the tape, the �nite
ontrol, and the position of the head, is assumed to bein quantum superposition. Another example is the quantum lambda
al
ulus of VanTonder [26, 27℄, whi
h is a higher-order, purely quantum language without an expli
itmeasurement operation.One might also imagine a perhaps more realisti
 model of a quantum
omputerwhere unitary operations and measurements
an be interleaved. As an example,
onsider the so-
alled quantum random a

ess ma
hine model, or QRAM model ofKnill [13℄, also des
ribed by Bettelli, Calar
o and Sera�ni [5℄. Here, a quantum
omputer
onsists of a
lassi
al
omputer with a quantum devi
e atta
hed to it. In this
on�guration, the operation of the ma
hine is
ontrolled by a
lassi
al program whi
hemits a sequen
e of instru
tions to the quantum devi
e for performing measurementsand unitary operations. This situation is summarized by the slogan \quantum data,
lassi
al
ontrol" [21℄. Several programming languages have been proposed to dealwith su
h a model [5, 19℄, but the one on whi
h this paper is based is the work ofSelinger [21℄.Van Tonder has built an operational semanti
s based on linear logi
, a resour
e-sensitive logi
 formalized by Girard [9℄. The idea to build an operational semanti
s for

CHAPTER 1. INTRODUCTION 4linear logi
 has already been explored [1, 28, 4℄. As a matter of fa
t Van Tonder [26℄uses the lambda-
al
ulus des
ribed by Wadler [28℄. In this
al
ulus, the distin
tionbetween linear and non-linear fun
tions is expli
it in the terms. Benton [4℄ has builta di�erent model verifying subje
t redu
tion. These two languages, however, donot allow variables to be dis
arded:
onstant fun
tions
annot be built. To allowvariable to be dis
arded, one needs a variant of linear logi
, the aÆne linear logi
.An interesting work on aÆne linear logi
 is the work of Propylov [18℄, who showedthe de
idability of aÆne linear logi
. A linear de
oration of intuitionisti
 proofs aswe intend to do was done in 1995 in [7℄.The solution proposed. This thesis addresses the issue of building up a higher-order fun
tional quantum programming language for quantum
omputation with
las-si
al
ontrol. In our language, a program is a lambda term, possibly with some quan-tum data embedded inside. The basi
 idea is that lambda terms en
ode the
ontrolstru
ture of a program, and thus, they would be implemented
lassi
ally, i.e., on the
lassi
al devi
e of the QRAM ma
hine. However, some of the data on whi
h thelambda terms a
t are possibly qubits, and are stored on the QRAM quantum devi
e.Be
ause our language
ombines
lassi
al and quantum features, it is natural to
on-sider two distin
t basi
 data types: a type of
lassi
al bits and a type of quantumbits. Higher types, su
h as integers or lists,
an be added as ne
essary.The
hallenge has several aspe
ts. One part is that we want the probabilisti
redu
tion to be the only side e�e
t. Due to the measurement operation, the redu
tionrules are then probabilisti
, and one problem we solve is to des
ribe the behavior of theprogram with respe
t to this probabilisti
 redu
tion. A se
ond part of the
hallengeis that due to entanglement, quantum bits
annot be dire
tly en
oded in the lambda-term. We need a way to en
ode the qubits of the QRAM in the lambda-term. Anotherpart of the
hallenge is that there are two kind of fun
tions: linear and on-linear ones.In parti
ular, a lambda-term
an be dupli
able or non-dupli
able. Depending on thisability, it
an or
annot be applied to a non-linear fun
tion, whi
h use its argumentmore than on
e. Unlike Van Tonder's lambda-
al
ulus, we want to let the
ompilerde
ide whether or not an argument
an be applied to a fun
tion or not. Finally, we

CHAPTER 1. INTRODUCTION 5want to be able to dis
ard variables. This requires an aÆne type system. Neither theone of van Tonder [26℄ nor the one of Benton [4℄, whi
h is linear,
an be used. Onemay ask whether it is possible to ful�ll these requirements.We give a positive answer to this
hallenge. We build an expressive programminglanguage whi
h embeds quantum operations as fun
tions. Using the well-known te
h-nique of type system [16℄, we are able to de
ide of the validity of a program in ourlanguage. The type system is based on aÆne linear logi
. The work of Propylov [18℄shows that the problem of the typability of a term is de
idable, but, sin
e our pro-posed type system is only a fragment of the full aÆne linear logi
, we �nd a simpleralgorithm. We use a similar method to [7℄.Plan. The plan of the thesis is the following. Chapters 2 to 4 are ba
kground, andChapters 5 to 9 are original work. In Chapter 2, we des
ribe more in depth the basi
sof quantum
omputing, and review what is already done. Then, for self-
ontainedness,in Chapter 3 we develop some results on intuitionisti
 typed lambda-
al
ulus, exposethe subje
t redu
tion, and develop a type inferen
e algorithm for this language. InChapter 4 we develop an introdu
tion on linear logi
, and explain how this is linkedto our model. The next
hapters expose the results found during this master thesis:In Chapter 5 a dis
ussion on the lambda-
al
ulus and the redu
tion rules, where weshow how the validity of a program is linked to the
hoi
e of redu
tion pro
edure. InChapter 6 we give a type system for the developed language, and in Chapter 7 weprove that it veri�es subje
t redu
tion. Finally in Chapter 8 and 9, we extend thelanguage and we build a type inferen
e algorithm, based on the intuitionisti
 skeletonof the type system.

Chapter 2Quantum programmingIn
lassi
al
omputation, we use
lassi
al physi
s to en
ode the data. The basi
unit of data is the bit whi
h
an take only two values, either 0 or 1. In quantum
omputation, we use obje
ts governed by quantum physi
s laws instead of
lassi
alphysi
s, in order to en
ode data. The unit of data is
alled the quantum bit, orqubit. A quantum bit
an be understood as a normalized ve
tor in a two-dimensionalHilbert spa
e. To understand it as a pie
e of information, it is
ustomary to
hoosean arbitrary orthonormal basis denoted (j0i; j1i), and
alled the
omputational basis.A qubit is then a ve
tor of the formj i = �j0i+ �j1i j�j2 + j�j2 = 1where � and � are
omplex numbers.There are many possible physi
al realization of a qubit. It
an be en
oded in thepolarization of a photon, see Figure 1. If we
hoose two orthogonal dire
tions as basis,one
an en
ode superposition by setting the plane of polarization with some
hosenangle of
osine j�j2 and sine j�j2.The juxtaposition of two qubits in states j 1i and j 2i is represented by the tensorj 1i
j 2i, also denoted j 1 2i, whi
h is an element of the 4-dimensional Hilbert spa
ewith basis j00i; j01i; j10i; j11i. More generally, if pnqN is the binary representation of
6

CHAPTER 2. QUANTUM PROGRAMMING 7
direction
of the photon

arbitrary basis
for the plane of polarisation

|1>

|0>Figure 1: Photon polarizationn with N digits, a ve
tor of N qubits
an be expressed as a sum:2N�1Xi=0 �ijpiqNi; with 2N�1Xi=0 j�ij2 = 1:2.1 MeasurementsTo retrieve the information stored in a qubit, one has to measure the obje
t thaten
odes the qubit. The measurement operation is a map that will proje
t the ve
tor�j0i+ �j1i onto j0i or j1i. The measurement yields an observable result whi
h is 0 ifthe ve
tor was proje
ted onto j0i, or 1 if it was proje
ted onto j1i. The pro
ess
anbe summarized as follows: �j0i+ �j1ij�j2
yytttttttttt j�j2

%%J
JJJJJJJJJj0i j1i�j0i+ �j1i proje
ts onto j0i with probability j�j2 and onto j1i with probability j�j2.For example, in the
ase of the photon, measurement is done using a polarized glass

CHAPTER 2. QUANTUM PROGRAMMING 8and a light dete
tor. This pro
ess is probabilisti
 and
ollapses the superpositionof data stored in the qubit. When measuring several qubits, the result is similar.In a two-qubit system �00j00i+ �01j01i+ �10j10i+ �11j11i, assume that we want tomeasure the �rst qubit. To understand what will happen, we
an fa
torize the systemas follows: j0i
 (�00j0i+ �01j1i) + j1i
 (�10j0i+ �11j1i)The measurement will
ollapse the state on one of the two subspa
es of basis j00i; j01iand j10i; j11i. It will out
ome with probability j�00j2 + j�01j2 the state1pj�00j2 + j�01j2 j0i
 (�00j0i+ �01j1i)and with probability j�10j2 + j�11j2 the state1pj�10j2 + j�11j2 j1i
 (�10j0i+ �11j1i)Measuring the se
ond qubit is similar, and we
an summarize the pro
ess with thediagram �00j00i+ �01j01i+ �10j10i+ �11j11ij�00j2+j�01j2
vvnnnnnnnnnnnnnnnnnn j�10j2+j�11j2

((PPPPPPPPPPPPPPPPPP1pj�00j2+j�01j2 (�00j00i+ �01j01i)j�00j2j�00j2+j�01j2
yyssssssssssssss j�01j2j�00j2+j�01j2

%%K
KKKKKKKKKKKKK

1pj�10j2+j�11j2 (�10j10i+ �11j11i)j�10j2j�10j2+j�11j2
yyssssssssssssss j�11j2j�10j2+j�11j2

%%K
KKKKKKKKKKKKKj00i j01i j10i j11iand then ea
h sequen
e of jxyi is rea
hed with probability j�xyj2.More generally, in the quantum system2N�1Xi=0 �ijpiqNi; with 2N�1Xi=0 j�ij2 = 1:the probability to get jpiqNi when measuring the system is j�ij2.

CHAPTER 2. QUANTUM PROGRAMMING 92.2 Unitary operations and quantum
ir
uitsThe other kind of operations we
an apply on qubits are unitary matri
es, or quantumgates. A unitary matrix A is su
h that AH = A�1 where AH is the
omplex transposeof A: AH =AtSome important gates are the 3-qubit gate To�oli, the 2-qubit gate CNOT andthe 1-qubit gates V�=8, the Hadamard gate H and the phase
ip P . They are de�nedas follows, with bases always written in the lexi
ographi
 order. For a 2-qubit systemfor example, the basis is (j00i; j01i; j10i; j11i).H = p22 1 11 �1 ! P = 1 00 i ! V�8 = 1 00 ei�=4 !NOT = 0 11 0 ! CNOT = 0BBBB� 1 0 0 00 1 0 00 0 0 10 0 1 0
1CCCCA To�oli = id4 00 CNOT !

A typi
al quantum
omputation would be �rst the
reation of an array j000 : : :0i,then the appli
ation of some
hosen quantum gates, and �nally the measurement ofthe result. Note
arrying on the same
omputation twi
e usually gives two di�erentresults: the results are probabilisti
. Inspired by boolean
ir
uits, a good way torepresent the list of unitary gates to apply is to write a quantum
ir
uit. Ea
h qubitis represented as a wire and gates are boxes that overlap on wires. The diagram isread from left to right and from top to bottom. For example,j i G1 G2j�i
omputes the state G2 Æ (G1
 id)(j i
 j�i):

CHAPTER 2. QUANTUM PROGRAMMING 10Note that if x; y and z are bits,NOT jxi = j1� xi;CNOT jxyi = jxi
 jz � xi andTo�oli jxyzi = jxi
 jyi
 jz � xyiWe write NOT as NOT = jxi � j1� xi;the CNOT as CNOT = jxi � jxijzi � jz � xi;the To�oli gate as To�oli = jxi � jxijyi � jyijzi � jz � xyiand the other gates with boxes:H = jxi H Hjxi;P = jxi P P jxi;V�=8 = jxi V�=8 V�=8jxi:This set of gates is said to be a universal set of gates, in the following sense:De�nition 2.2.1 A set B of quantum gates is said to be universal if, for any unitaryoperator U 0 on n qubits and any � > 0, there exists a �nite
ir
uit U in those gates,and some � 2 C with j�j = 1, satisfying:jjU � �U 0jj < � with the norm to be jjAjj = minj�j=1(jA�j):There exist a lot of universal sets of gates. It is not ne
essary to sti
k to a spe
i�
universal set sin
e ea
h universal set
an simulate any other one. Moreover, one set ofgates
an be suited better for a given physi
al implementation than another universalset.

CHAPTER 2. QUANTUM PROGRAMMING 112.3 EntanglementIt is interesting to note that the information is non-lo
al in an array of qubits. Indeeda 2-qubit system
annot always be written as j 1i
 j 2i with 1 and 2 qubits.In parti
ular the notion of a pair of qubits
annot be thought of as in
lassi
al
omputation, where ea
h element of the pair
an be rea
hed.De�nition 2.3.1 A 2-qubit state j i is said to be entangled if it
annot be writtenas j 1i
 j 2i. If we
an write it under this form, then it is said to be unentangled.For example, the state 1p2(j00i+ j11i) is entangled. One
annot separately determinethe values of the �rst and of the se
ond qubit. The �rst and the se
ond qubits are
ompletely linked one to the other: measuring the �rst will immediately allow us tosay what will be the result of the measurement of the se
ond one:1p2(j00i+ j11i)0:5
~~}}

}}
}}

}}
} 0:5

AA

AA
AA

AA
Aj00i1

����
��
�� 0

��
..

..
..

j11i0
����
��
�� 1

��
00

00
00j00i j01i j10i j11i:If the �rst qubit was measured to be j1i, then the se
ond one is j1i with probability1. Similarly, if the �rst qubit was measured to be j0i, then the se
ond one is j0i withprobability 1.Entangled states are easy to
onstru
t: Consider the statej�i = CNOT Æ (H
 id)(j00i):This is equal to j�i = CNOT 1p2(j00i+ j10i):CNOT maps j00i to j00i and j10i to j11i. Sin
e it is linear, we havej�i = 1p2(j00i+ j11i);and we rea
h the previously seen entangled state.

CHAPTER 2. QUANTUM PROGRAMMING 122.4 Simulation of a
lassi
al
omputer on a quan-tum
omputerOne may ask whether it is possible to simulate a
lassi
al boolean
ir
uit on a quan-tum
omputer. One
ould think that the fa
t that we
an only apply unitary gateswould be a
onstraint. Indeed, a quantum
omputation is always reversible. If wewant to
ompute any arbitrary fun
tion f from f0; 1gn to f0; 1gm, there might be aproblem sin
e the fun
tion might not be reversible. We
an
ir
umvent this problemby repla
ing f by a reversible fun
tion f 0:f 0 : f0; 1gn � f0; 1gm �! f0; 1gn � f0; 1gm(x; y) 7�! (x; f(x)� y):The reversible fun
tion f 0
an then be implemented on qubits as a unitary transfor-mation. However we need auxiliary qubits. First we need some to store the unwantedinformation that keeps the
omputation reversible, and then we need more qubits fors
rat
h spa
e.Theorem 2.4.1 Any boolean fun
tion
an be modeled using a quantum
ir
uit.Proof. Any boolean fun
tion
an be written in terms of AND and NOT gates. Itis suÆ
ient to be able to simulate a AND boolean gate, a NOT boolean gate, and tobe able to dupli
ate a bit. We only need the To�oli gate:To�oli(jxi
 jyi
 j0i) = jxi
 jyi
 jx AND yi;and then
omputing x AND y is equivalent to
omputing To�olijxy0i and to
onsiderthe third qubit. Similarly the NOT gate
an be simulated as follows:To�oli(jxi
 j1i
 j1i) = jxi
 j1i
 j1� x� 1i = jxi
 j1i
 jNOT xi;and then
omputing NOT x is equivalent to
omputing To�olijx11i and to
onsiderthe third qubit. To dupli
ate a bit x, one
an
omputeTo�oli(jxi
 j1i
 j0i) = jxi
 j1i
 j0� x� 1i = jxi
 j1i
 jxi

CHAPTER 2. QUANTUM PROGRAMMING 13and we dupli
ated the bit and pla
ed it in the �rst and last qubit. Note that in ea
h
omputation, we need s
rat
h spa
e. Provided that we are able to initialize a givenarray of qubits (i.e. to set ea
h of them in some given state j0i or j1i), we are ableto
ompute any boolean fun
tion. �Remark 2.4.2 The last quantum
ir
uit only dupli
ates bits, not qubits: if jxi issome superposition �j0i+ �j1i, sin
e the previous
omputation is linear it answers�j010i+ �j111iwhi
h is an entangled state.2.5 Issues spe
i�
 to quantum
omputersSuperposition of states. Some issues are spe
i�
 to quantum
omputers. Inparti
ular, the power of quantum
omputation over
lassi
al
omputation is in thesuperposition of states. Given an array of n qubits, one
an superimpose the binaryrepresentations of all the numbers from 0 to 2n � 1. Sin
e the a
tion on this stateby a unitary transformation will apply it on ea
h one of the pure states that aresuperimposed in the qubit by linearity, we are able to do strong parallelism in oneoperation. For example,
onsider the following quantum
omputation:jx1i Hjx2i Hjx3i HGiven j000i it
omputes the state1p23 (j0i+ j1i)
 (j0i+ j1i)
 (j0i+ j1i):If we develop, it be
omes12p2(j000i+ j001i+ j010i+ j011i+ j100i+ j101i+ j110i+ j111i)

CHAPTER 2. QUANTUM PROGRAMMING 14whi
h is the superposition of the binary representations of all numbers from 0 to23 � 1 = 7. Let U be a unitary operatorjx1i...jx3i Ujy1i ;...jymi
omputing some boolean operation f : f0; 1g3 ! f0; 1g3, on the �rst �ve qubits forsome �xed y1; : : : ym. Then if we
ompose it with the �rst quantum
ir
uit, by linearityit
omputes the fun
tion f on ea
h piq3 for i = 0 : : : 7 in the state superposition:U(12p2 7Xi=0 jpiq3i
 jy1 : : : ymi) = 12p2 7Xi=0 jf(piq3)i
 jy1 : : : ymi:This is done in a simple step and would have required 8
omputations of f for ea
hpiq3 in a
lassi
al
omputation.Indeed, using an algorithm based on the strong parallelism o

urring during quan-tum
omputation, Shor [22, 23℄ proved that using a quantum
omputer, fa
torizationof an integer n is of
omplexity O(logn), far better than any pre-existing algorithmusing
lassi
al methods.Another
hara
teristi
 is that qubits
annot be dupli
ated, due to the no-
loningproperty. Spe
i�
ally, there is no operation whi
h inputs an unknown state j�i andreturns j�i
 j�i. Indeed, su
h an operation would map �j0i+ �j1i to(�j0i+ �j1i)
 (�j0i+ �j1i) = �2j00i+ ��j01i+ ��j10i+ �2j11i;whi
h is not a linear operation (mu
h less unitary).

CHAPTER 2. QUANTUM PROGRAMMING 152.6 Pra
ti
al
onsiderationsFor quantum
omputation, a strong drawba
k is the de
oheren
e phenomenon. Aquantum parti
le is never alone in its world. There is always intera
tion with otherparti
les,
oming from the box where the parti
le is stored or from outer spa
e. Allthese intera
tions a
t like measurements and modify the state of the parti
le. Thislimits the pre
ision of the
omputation. Moreover, the de
oheren
e pro
ess getsstronger as the number of
onsidered qubits in
reases. Quantum error-
orre
tion [15℄
an be used to
ompensate this problem, provided the initial de
oheren
e is not tosevere. For the purpose of this thesis, we will ignore this issue, and assume that
omputations take pla
e in a perfe
t quantum world.2.7 ExamplesThe Deuts
h Algorithm. This is an algorithm to �nd out whether a booleanfun
tion is balan
ed or
onstant. In
lassi
al
omputation, two
alls to the fun
tionare needed. In quantum
omputation, one
an �nd it out in only one
all. Thealgorithm takes as input a two-qubit unitary operator Uf :Uf (jxi
 jyi) = jxi
 jy � f(x)i:The quantum
ir
uit for the algorithm is the following:j0i H x x H jf(0)� f(1)ij1i H y y � f(x) :To �nd the answer, we have to measure the �rst qubit: if it is 0 then the fun
tion isbalan
ed, if it is 1 it is not.Note that the input of this algorithm is a \bla
k-box", in other terms a fun
tionfrom two qubits to two qubits.

CHAPTER 2. QUANTUM PROGRAMMING 16Proof that the pro
edure is
orre
t. This will
ompute the following thing:(H
 id)Uf (H
H)(j0i
 j1i)= (H
 id)Uf (1p2(j0i+ j1i)
 1p2(j0i � j1i))= (H
 id)Uf 12(j00i+ j10i � j01i � j11i)= (H
 id)12(j0i
 j0 + f(0)i+ j1i
 j0 + f(1)i�j0i
 j1 + f(0)i � j1i
 j1 + f(1)i)= 12p2((j0i+ j1i)
 jf(0)i+ (j0i � j1i)
 jf(1)i�(j0i+ j1i)
 j1 + f(0)i � (j0i � j1i)
 j1 + f(1)i)= 12p2(j0i
 (jf(0)i+ jf(1)i � j1 + f(0)i � j1 + f(1)i)+j1i
 (jf(0)i � jf(1)i � j1 + f(0)i+ j1 + f(1)i):If f(0) = f(1), then jf(0)i � jf(1)i � j1 + f(0)i+ j1 + f(1)i = 0 and the result is12p2 j0i
 (jf(0)i+ jf(1)i � j1 + f(0)i � j1 + f(1)i):If f(0) = 1+ f(1), then jf(0)i+ jf(1)i � j1+ f(0)i � j1+ f(1)i = 0 and the result is12p2 j1i
 (jf(0)i � jf(1)i � j1 + f(0)i+ j1 + f(1)i):So the value of the measurement of the �rst qubit is 0 if the fun
tion f is balan
ed,and 1 in the other
ase. �The teleportation algorithm. It is a good example of algorithm that is hardlywritten in term of quantum
ir
uits: A measurement needs to be done as a part ofthe formalism. The pro
edure
an be written as follows:j�i � H M
��

j0i H � �j0i � Uxy j�i:
_ _�
�
�
�
�
�
�

�
�
�
�
�
�
�

_ _The pro
edure \teleports" the state of the �rst qubit to the third one. The dashed-box M represents the measurement of the two �rst qubits. The gate Uxy depends on

CHAPTER 2. QUANTUM PROGRAMMING 17two
lassi
al bits x and y, whi
h are the result of this measurement:If M outputs 00; U00 = 1 00 1 !If M outputs 01; U01 = 0 11 0 !If M outputs 10; U10 = 1 00 �1 !If M outputs 11; U11 = 0 1�1 0 ! :The whole pro
edure is summarized in four steps:1. Create an entangled state 1p2(j00i + j11i) with the two last qubits using the
ir
uit j0i H �j0i � :2. Rotate the two �rst qubits, using the
ir
uit� H� :3. Then measure the resulting two qubits.4. Finally, upon the result, apply the right transformation U to the third qubit.Proof that the pro
edure is
orre
t. The rotation pro
esses the following
om-putation CNOT H
 idj00i 7! j00i 7! 1p2(j00i+ j10i);j01i 7! j01i 7! 1p2(j01i+ j11i);j10i 7! j11i 7! 1p2(j01i � j11i);j11i 7! j10i 7! 1p2(j00i � j10i):

CHAPTER 2. QUANTUM PROGRAMMING 18If we apply it to the two �rst qubits of(�j0i+ �j1i)
 1p2(j00i+ j11i)= 1p2(�j000i+ �j011i+ �j100i+ �j111i)we get12(�(j000i+ j100i) + �(j011i+ j111i) + �(j010i � j110i) + �(j001i � j101i))= 12(j00i
 (�j0i+ �j1i) + j01i
 (�j0i+ �j1i)+j10i
 (�j0i � �j1i) + j11i
 (�j1i � �j0i))If we measure the two �rst qubits, the third qubit be
omes�j0i+ �j1i if 00 was measured;�j0i+ �j1i if 01 was measured;�j0i � �j1i if 10 was measured;�j1i � �j0i if 11 was measured:Finally note that if Uxy is applied in the
ase where x; y was measured, the the stateof the last qubit is �j0i+ �j1i. �2.8 Models for quantum
omputationModels of quantum
omputations essentially fall into two
lasses. In some models,there is a quantum devi
e whose operations is
ontrolled by a
lassi
al
omputer.We refer to su
h models as having
lassi
al
ontrol. In some other models, there isno
lassi
al devi
e. The measurement takes pla
e at the end, it is not part of theformalism. We refer to those models as having quantum
ontrol.2.8.1 Quantum
ontrolOne
an
onsider that all the parts of the
omputation o

ur in an array of quantumbits: an algorithm may be written only in terms of quantum
ir
uits. There is no
lassi
al
omputer to intera
t with; the whole pro
ess is modeled by quantum gates.The
anoni
al example is the algorithm written in terms of quantum
ir
uits.

CHAPTER 2. QUANTUM PROGRAMMING 19The quantum Turing ma
hine. A way to understand
lassi
al
omputation isthe universal Turing ma
hine. Des
ribed by Turing [25℄, it is an automaton togetherwith an in�nite tape divided into
ells and a
ursor. Ea
h
ell is either blank or
ontains a symbol from a �nite alphabet. The tape should
ontain only �nitely manynon-blank symbols. The automaton is allowed to read or write what is under the
ursor, or to move the
ursor to the right or to the left upon testing the
ontent ofthe
ell. This very simple ma
hine
an model any
omputation.Deuts
h and Benio� [8, 3℄ have des
ribed a Quantum Turing ma
hine, whereeverything is en
oded in quantum data: the tape, the
ursor, and the states of theautomaton are en
oded as a quantum state.Van Tonder's lambda-
al
ulus. This model of quantum
ir
uit is a more ab-stra
t way for visualizing an algorithm. Van Tonder [26, 27℄ des
ribes a higher orderlanguage for writing quantum algorithms. His language does not have a measurementoperation, and is en
oded in an array of quantum bits. It
an then be implementedin a quantum Turing ma
hine.The terms are de�ned as follows:Term M;N; P ::= xj
j !Mj �x:Mj �!x:Mj (MN);where
 ranges over a set of
onstants, in
luding 0, 1 as well as
onstants from unitarygates su
h as H, the Hadamard gate. The term !M is de
orated with ! to indi
atethat the term
an be dupli
ated: it is said to be non-linear. �!x:M is an fun
tionthat requires a non-linear term as argument.An example of redu
tion
ould be:j(�x:x)(H0)i �!� p22 (j(�x:x)0i+ j(�x:x)1i)�!� p22 (j0i+ j1i)

CHAPTER 2. QUANTUM PROGRAMMING 20Van Tonder de�nes the notion of well-formed term,
onstru
ts a
omputationalmodel for his language and proves that given a well-formed term M , if Pi �iMi is aredu
tion of M , then the Mi may di�er only in the
onstants 0 and 1. Moreover:Theorem 2.8.1 The
omputational model provided by the lambda-
al
ulus des
ribedby van Tonder is equivalent to the quantum Turing ma
hine. �2.8.2 Classi
al
ontrolAnother way to see the quantum
omputation pro
ess is to imagine that a quantum
omputation is a
ombination of
lassi
al
omputation, measurements and unitaryoperations over quantum bits.QRAM model. The QRAM model for a quantum
omputer was des
ribed byKnill [13℄. In this model, an array of quantum bits is stored in a spe
ial devi
e,and the devi
e is linked to a universal
lassi
al
omputer, see Figure 2. The
las-si
al devi
e a
ts on the quantum devi
e by sending to it a sequen
e of
ommandsto perform initializations (setting a qubit to j0i or j1i), built-in unitary operationsand measurements. All the
lassi
al operations are allowed, they are
ontained inthe
lassi
al
omputer. One
an imagine that there is a spe
ial library to talk withthe quantum devi
e, with spe
ial fun
tions to measure, allo
ate and free qubits, andapply unitary transformations.Selinger's
ow-
harts. A language that is based on the use of a QRAM model isthe
ow-
harts language from Selinger [21℄. This model uses the
ow-
hart notationto write programs: it is a super-set of a
lassi
al
ow-
hart language. A program isa graph together with a
ursor that follows the wires, with data atta
hed to it.The graph is
onstru
ted from the rules in Table 1. Adding the notion of loopsand the notion of re
ursion make the language powerful enough to des
ribe the set ofsuperoperators.

CHAPTER 2. QUANTUM PROGRAMMING 21
linked on the
network with access
to the quantum device

 accessible from the network
Quantum device

Computer

Figure 2: A model of quantum
omputer
�new bit b = 0b: bit;� �new bit b = 1b: bit;� �new qbit q = 0q: qbit;� �new qbit b = 1q: qbit;�q1: qbit;:::;qn: qbit ;�q1; : : : qn �= Unq1: qbit;:::;qn: qbit ;� �permute ��(�)q: qbit;�meas q1q: qbit;�IIIIIIIIIq: qbit ;�0

uuuuuuuuu

� ??
??

??
? ���

��
��

��� b: bit;�bran
h b1b: bit;�JJJJJJJJJ
Jb: bit;�0

tt
tt

tt
tt

ttTable 1: Rules for
onstru
ting quantum
ow-
harts

Chapter 3Lambda-
al
ulusFor self-
ontainedness, we give a brief introdu
tion to the lambda-
al
ulus. For amore detailed des
ription, see e.g. [2℄. We des
ribe a lambda-
al
ulus for writingboolean fun
tions, and we present the de�nitions and results that will be used inlater
hapters.3.1 Untyped lambda-
al
ulusThe lambda-
al
ulus is an expression language: a program is an expression whi
hevaluate to a value. A lambda-expression, or lambda-term, evaluates similarly to3 + 5: The addition takes two values as arguments, and redu
es to a value:3 + 5! 8:This notion of redu
tion is the basis of lambda-
al
ulus.Also, in lambda-
al
ulus, we have a notation for the notion of fun
tion. We writefor example �x:x + 3in pla
e of x 7! x + 3:We
all �x:M an abstra
tion. 22

CHAPTER 3. LAMBDA-CALCULUS 23The appli
ation of 5 to the previous fun
tion is written(�x:x + 3) 5 :In general, MN represent the argument N applied to the fun
tion M .A higher-order example is the
omposition operation. It
an be written asC = �f:�g:�z:g(fz);so that Cfg = f Æ g. It takes two arguments g and f and returns g Æ f . Note that afun
tion in two arguments is expressed as a fun
tion in one argument whi
h returnsanother fun
tion. This notation is
alled
urrying [16, p. 58℄We add the notion of pair hP;Qi. To be able to re
over the
ontent of a pairhP;Qi, we use the term let hx; yi=hP;Qi in N . It evaluates to N with P in pla
e ofx and Q is pla
e of y. This operator is linear in x and y.A spe
ial symbol � is provided,
alled a unit. This term does not evaluate toanything.We formally de�ne a �-term using an abstra
t syntax
alled the Ba
kus-Naurform [14℄. Given Vterm a
ountable set of variables and Cterm a set of
onstants,Term M;N; P ::= xj
j �x:Mj (MN)j if (P ;M ;N)j �j hM;Nij let hx; yi=M in Nwhere x 2 Vterm a set of variable and
 2 Cterm a set of
onstants. Sin
e this
al
ulusis for representing boolean fun
tions, we want the
onstants 0 and 1 to be in Cterm ,for representing the boolean values. The term if (P ;M ;N) is the test operator. Theterm �x:M is a fun
tion of an argument x. It is also
alled abstra
tion. The term(MN) is the appli
ation of N to M . The term hM;Ni is the pair of �rst element Mand se
ond element N . The term let hx; yi=M in N is used to retrieve the
ontentof a produ
t. Finally, � is the unit.

CHAPTER 3. LAMBDA-CALCULUS 24Conventions and notations. Given a pair M , we de�ne two terms �1(M) and�2(M) by �1(M) = let hx; yi=M in x and�2(M) = let hx; yi=M in y;to represent the �rst and the se
ond proje
tion.We
ombine several variable in the same abstra
tion for
larity:�x1x2x3:M = �x1:�x2:�x3:M:The appli
ation pro
edure is asso
iative to the left:M1M2M3M4M5 = (((M1M2)M3)M4)M5:Finally, the �-abstra
tion has priority over the appli
ation:�x:MN = �x:(MN) :Free variables. We
an de�ne a boolean AND operator by:�x:let hy; zi=x in if (y; if (z; 1; 0); 0)This is a fun
tion (an abstra
tion), with argument x, supposed to be a pair hy; zi,and returning y AND z. We say that x; y and z are bound by the abstra
tion. Moregenerally, a variable o

urren
e x in a term M is bound if there is an abstra
tion ofvariable x that
ontains it. A variable that is not bound by any abstra
tion is
alled afree variable. A term that doesn't have free variables is
alled
losed. More formally,we will denote FV (M) the set of the free variables of a term M , de�ned in Table 2.�-equivalen
e. Two terms are
alled �-equivalent, written M =� N , if they di�eronly in the names of bound variables, e.g.�x:x =� �y:y:For details on renaming of bound variables, see [2℄. From now on, we will identify�-equivalent terms and
onsider terms to be equal without further mention.

CHAPTER 3. LAMBDA-CALCULUS 25
FV (x) = fxgFV (MN) = FV (M) [FV (N)FV (�x:M) = FV (M) n fxgFV (
) = ;FV (if (P ;M ;N)) = FV (P) [FV (M) [FV (N)FV (�) = ;FV (hM1;M2i) = FV (M1) [FV (M2)FV (let hx; yi=M in N) = FV (M) [(FV (N) n fx; yg)Table 2: De�nition of the set of free variablesTerm substitution To evaluate the programs de�ned by lambda terms, we needthe notion of term substitution. A term substitution is a fun
tion from Vterm toterms su
h that �(x) = x for all but �nitely many variables x1 : : : xn. We write� = fxi 7! Mi; i = 1 : : : ng, and we
all j�j the set fx1 : : : xng. We extend it to ��fun
tion from terms to terms, de�ned in Table 3.Convention. Given a set Y of variables, we write �jY the substitution de�ned by�jY (x) = (�(x) if x 2 Y;x elseFor full details on the de�nition of substitution, see [2℄.Conventions. If � = fx1 7!M1; : : : xn 7!Mng, we often write M [M1=x1; : : :Mn=xn℄in pla
e of ��(M).Fresh variable. Sometimes we need a new variable in a proof. We will
all thisvariable a fresh variable. By \fresh", we mean that it has never ever o

ur anywhere.Whatever term, substitution or set of variables we may have talked about, the freshvariable wasn't there.

CHAPTER 3. LAMBDA-CALCULUS 26
��(x) = �(x)��(
) =
��(MN) = ��(M)��(N)��(if (P ;M ;N)) = if (��(P); ��(M); ��(N))��(�) = ���(hM1;M2i) = h��(M1); ��(M2)i��(�x:M) = �x:�jj�jnfxg(M)��(let hx; yi=N in M) = let hx; yi=��(N) in �jj�jnfx;yg(M)Table 3: De�nition of term-substitution3.1.1 �-redu
tionHow
an we run a program ?Intuitively, to run a program, we need to redu
e the number of appli
ations thato

ur, by applying arguments to fun
tions. For example, in arithmeti
, to
ompute(3 + 5) � 7one need to �rst redu
e ea
h side of the multipli
ation to an integer, then to
omputethe multipli
ation. One
ould write(3 + 5) � 7! 8 � 7! 56We say that we redu
e the term 3 + 5, We need to redu
e it �rst, sin
e the multipli-
ation is only de�ned on values.Formally, we de�ne the single-step �-redu
tion in Table 4We extend this relation to �!��, transitive and re
exive
losure of �!�, and to=� symmetri
, transitive and re
exive
losure of �!�.The notion of redex is de�ned as follows:De�nition 3.1.1 A term Q is
alled a redex if it is of one of the following forms:(�x:M)N; let hx; yi=hM;Ni in P;if (0;M ;N); if (1;M ;N):

CHAPTER 3. LAMBDA-CALCULUS 27
(�) (�x:M)N �!� M [N=x℄(if 1) if (1;M ;N) �!� M(if 0) if (0;M ;N) �!� N(let) let hx1; x2i=hM1;M2i in N �!� N [M1=x1;M2=x2℄M �!� M 0MN �!� M 0N (
ong1) N �!� N 0MN �!� MN 0 (
ong2)M �!� M 0�x:M �!� �x:M 0 (��)P �!� P 0if (P ;M ;N)�!� if (P 0;M ;N) (�1if) M �!� M 0if (P ;M ;N)�!� if (P ;M 0;N) (�2if)N �!� N 0if (P ;M ;N)�!� if (P ;M ;N 0) (�3if)M �!� M 0hM;Ni �!� hM 0; Ni (�1�) N �!� N 0hM;Ni �!� hM;N 0i (�2�)M �!� M 0let hx; yi=M in N �!� let hx; yi=M 0 in N (�1let)N �!� N 0let hx; yi=M in N �!� let hx; yi=M in N 0 (�2let)Table 4: �-redu
tion rules

CHAPTER 3. LAMBDA-CALCULUS 28(�x:M)N is
alled �-redex. This allows us to speak of di�erent redexes in a giventerm Q when di�erent subterms of Q are redexes.Example. Consider the redu
tion of the following term, where M is any term:(�x:�y:x)MHere we have an appli
ation: a fun
tion of argument x, fed withM . This appli
a-tion is
alled a redex. We have to substitute all free o

urren
es of x by M in what'safter the ':'. By doing so, we get �y:M . We have to be
areful: M
ould
ontain freeo

urren
es of y. So we have to substitute the bound variable y by a fresh variable zin �y:x before redu
ing. The result would be: �z:M . This is the reason why we need�-equivalen
e of terms.An other problem
an o

ur when there is several subterms that are redexes in aterm. We have to make a
hoi
e.To illustrate it,
onsider the following example. Suppose we want to use thisfun
tion to
ompose the boolean fun
tion not and and in order to build the booleanor fun
tion. One
an
onstru
t them as follows:not = �x: if (x; 0; 1);and = �xy: if (x; if (y; 1; 0); 0):The boolean fun
tion or
an be
onstru
ted as follow:or = not�xy:and(not x)(not y)= (�x: if (x; 0; 1))�xy:(�xy: if (x; if (y; 1; 0); 0))((�x: if (x; 0; 1)); x)((�x: if (x; 0; 1)) y)Consider the
omputation of or(1)(0). At ea
h step of the redu
tion of this termwe have to make a
hoi
e of whi
h subterm to redu
e. Starting by redu
ing andbefore applying the arguments:not(�xy:and(not x)(not y))(1)(0)�!� not(�xy:(�z: if ((not x); if (z; 1; 0); 0))((not y)))(1)(0)�!� not(�xy: if ((not x); if ((not y); 1; 0); 0))(1)(0)�!� not(�y: if ((not 1); if ((not y); 1; 0); 0))(0)�!� not if ((not 1); if ((not 0); 1; 0); 0)

CHAPTER 3. LAMBDA-CALCULUS 29If we start by redu
ing (not 1):�!� not if ((if (1; 0; 1)); if ((not 0); 1; 0); 0)�!� not if (0; if ((not 0); 1; 0); 0)One
an either
ontinue with (not 0), or redu
e the �rst or, or redu
e dire
tlyif (0; if ((not 0); 1; 0); 0):If we redu
e dire
tly: �!� not 0�!� if (0; 0; 1)�!� 1With this redu
tion
hoi
e, or 1 0 = 1.Lemma 3.1.2 If M is
losed, and if M �!� M 0, then M 0 is
losed.Proof. By easy indu
tion on the derivation of M �!� M 0, it is suÆ
ient to provethat FV (M) � FV (M 0). �A
entral property of �-redu
tion is the
on
uen
e, also known as the Chur
hRosser Theorem:Theorem 3.1.3 Given M and N two lambda-terms su
h that M =� N , there existsa term P su
h that M �!�� P and N �!�� P . �One
an �nd a
omplete dis
ussion for this result in [2, p.54℄.3.1.2 Redu
tion strategiesAs we have seen, there
an be several di�erent redexes in a lambda-term, and thequestion arises in whi
h order to redu
e them. The order of redu
tion often doesmatter. For example,
onsider (�x:0)M , with M redu
ing to a value in 100 steps.We
an
hoose to �rst redu
e the argument M , and the redu
tion takes 101 steps to

CHAPTER 3. LAMBDA-CALCULUS 30rea
h a value. On another hand, one
an start by redu
ing the lambda-abstra
tion.Then we rea
h in one step (�x:0)M �!� 0Therefore, when spe
ifying a programming language, it is
ustomary to �x a redu
tionstrategy. A redu
tion strategy spe
i�es, for any given term, whi
h redex, if any, toredu
e in the next step.A standard redu
tion strategy, or way to
hoose whi
h subterm to redu
e �rst, is
alled
all-by-value. For a more
omplete dis
ussion, see [16℄. The idea is to start byredu
ing arguments before applying them. This is the strategy we applied on (3+5)�7:we need to �rst redu
e 3 + 5 to a value before
omputing the multipli
ation. Thekey-point in
all-by-value is an abstra
tion is
onsider as being a value: that we neverredu
e an abstra
tion. The values are de�ned as follows:Value U; V ::= xj
j �x:Mj hU; V ij � :Let M , M 0, N and N 0 be terms, x a variable and V , V1 and V2 values. The
all-by-value redu
tion rules are found in Table 5. These rules implements a
all-by-valuestrategy: A �-redex is redu
ed only if its argument is already a value. Similarly, inan appli
ation MN , the redu
tion always o

urs �rst in the argument N if it is notalready a value. Hen
e M starts redu
ing only when N is redu
ed to a value.Lemma 3.1.4 If V is a
losed value, there is no term M su
h that V �!CBV M .Proof. No rules
an be applied, so no redu
tion is possible. �Lemma 3.1.5 the
all-by-value redu
tion strategy is deterministi
: If M �!CBV M 0and M �!CBV M 00, then M 0 =M 00.Proof. By stru
tural indu
tion on M and inspe
tion of the possible rules, only onerule
an be applied for ea
h
ase. �

CHAPTER 3. LAMBDA-CALCULUS 31
(�) (�x:M)V �!CBV M [V=x℄(if 1) if (1;M ;N) �!CBV M(if 0) if (0;M ;N) �!CBV N(let) let hx1; x2i=hV1; V2i in N �!� N [V1=x1; V2=x2℄M �!CBV M 0MV �!CBV M 0V (
ong1) N �!CBV N 0MN �!CBV MN 0 (
ong2)P �!CBV P 0if (P ;M ;N)�!CBV if (P 0;M ;N) (�if)M �!CBV M 0hM;Ni �!CBV hM 0; Ni (�1�) N �!CBV N 0hM;Ni �!CBV hM;N 0i (�2�)M �!CBV M 0let hx; yi=M in N �!CBV let hx; yi=M 0 in N (�let)Table 5: Intuitionisti

all-by-value redu
tion strategy3.2 Typed lambda-
al
ulusThe notion of lambda-term is a powerful way of representing fun
tions and programs.But we need a way to prevent run-time errors as mu
h as possible. For example,if (�x:x; 1; 1)
annot be redu
ed, but it is not a value. It is a run-time error. Theusual way to prevent them is to use what is
alled a type system. A type is astru
ture that we asso
iate with a term to de�ne the behavior of this term in a pie
eof
ode. For example, in a program, you may want to know if a variable is a string,to
he
k if you are allowed to
on
atenate it with another string. You may also wantto know if a variable refers to a fun
tion, and what kind of fun
tion. This notationmakes the program more readable by the programmer to determine exa
tly how touse an expression. A term whi
h admits a type is
alled typable. A term together witha type is
alled well-typed. A powerful enough type system must verify two things.It should verify the safety property. This in
lude the preservation theorem, alsoknown as subje
t redu
tion, and the progress theorem. A programming languagethat veri�es subje
t redu
tion is su
h that any program keeps the same type whileredu
ing. The progress theorem states that a well-typed term is either a value or
an

CHAPTER 3. LAMBDA-CALCULUS 32be redu
ed.It should also have a type inferen
e algorithm. Given a term, the algorithm hasto answer whether or not the term is typable. If it is typable, the algorithm
ouldalso give ba
k, if possible, a
hara
terization of the set of all possible types for theterm. This algorithm is useful for the programmer sin
e he does not have to spe
ifythe type manually.In this se
tion, we des
ribe a type system for the lambda-
al
ulus de�ned above,and dis
uss the safety property and a type inferen
e algorithm.Type system. Following the mathemati
al intuition, denotationally a type is a aset of �-terms. We have a notion of fun
tion, a notion of produ
t and some basi
terms. We need at least Type A;B ::= Xj �j (A)B)j >j (A�B);where � spans Ctype a set of type
onstants and X spans Vtype , a
ountable set of typevariables. Ctype needs to
ontain at least bit , to store the term
onstants 0 and 1. Thenotation (A)B) stands for the set of fun
tions of domain A and
o-domain B, and(A � B) for the set of pairs of an element in A and an element in B. > is the typewith a single element �.Typing rules. A term with free variables
an only be well typed if its free variableshave a well-known type. This is the reason why we de�ne what is
alled a typingjudgment. A typing judgment is a tuple�IM : Bwhere M is a term, B is a type, and � is a set of variables j�j = fx1; : : : xngtogether with a fun
tion �f from j�j to the set of types. We usually denote � by

CHAPTER 3. LAMBDA-CALCULUS 33
�I
 : A
 (
) �; x : AI x : A (x)�; x : AIM : B�I �x:M : A)B (�) �IM : A)B �IN : A�IMN : B (app)�I P : bit �IM : A �IN : A�I if (P ;M ;N) : A (if)�IM1 : A1 �IM2 : A2�I hM1;M2i : A1 � Ak (�)�I � : > (>) �IM : C �D �; x:C; y:D IN : A�I let hx; yi=M in N : A (let)Table 6: Typing rules for the simply-typed lambda-
al
ulusfx1 : A1; : : : xn : Ang, with Ai = �f(xi). � is
alled a typing
ontext. A typingjudgment is said to be valid if it
an be derived from the rules in Table 6.We write �1;�2 for �1 [�2 with j�1j \ j�2j = ;. We also write �; x:A for�; fx:Ag.For ea
h term
onstant
 2 Cterm , �x a type A
, su
h that A0 = A1 = bit .3.2.1 Properties of typing judgmentsLemma 3.2.1 (Weakening) If x 62 FV (M) and �; x:AIM :B is valid, then�IM :Bis also valid.Proof. By stru
tural indu
tion on the typing-tree of �; x:AIM :B.(
) M =
 and B = A
. Then �IM : B is an appli
ation of the (
) rule.

CHAPTER 3. LAMBDA-CALCULUS 34(x) M = y, y 6= x sin
e x 62 FV (M). From the rule, y 2 j�j. So �IM : B is valid,applying (x).(�) M = �y:P . The typing tree starts with�; x:A; y:C I P :D�; x:AI �y:P :C)D:From the de�nition of
ontexts, y 6= x. Then sin
e x 62 FV (M), x 62 FV (P).Applying indu
tion hypothesis, one gets that �; y:C IP :D is valid. (�)
an beapplied: �I �y:P :C)D is valid.(app) M = NP , and the typing tree starts with....�; x:AIN :C)D�; x:AI P : C�; x:AINP :D (app):Sin
e FV (NP) = FV (N) [FV (P), x 62 FV (N) and x 62 FV (P). Then we
an apply the indu
tion hypothesis: �IN :C)D and �; x:AIP :C are valid.Applying (app), one gets that �INP :D is valid.(if) M = if (N ;P ;Q), and the typing tree starts with....�; x:AIN :bit�; x:AI P :A�; x:AIQ:A�; x:AI if (N ;P ;Q):A (if)Sin
e FV (if (N ;P ;Q)) = FV (N) [FV (P) [FV (Q), x 62 FV (N), x 62 FV (P)and x 62 FV (Q). Then we
an apply the indu
tion hypothesis: � I N :bit,�I P :A and �IQ:A are valid typing judgments. With rule (if) we get that�I if (N ;P ;Q):A is valid.(�) M = hM1; : : : ;Mki, and the typing tree starts with....�; x:AIM1 : A1�; x:AIM2 : A2�; x:AI hM1; : : : ;Mki : A1 � : : :� Ak

CHAPTER 3. LAMBDA-CALCULUS 35Sin
e FV (hM1;M2i) = FV (M1) [FV (M2), the indu
tion hypothesis apply onea
h bran
h of the typing tree, and �IMi : Ai is valid for all i. One
an apply(�), and we get �I hM1;M2i : A1 � A2is valid.(>) M = � and the typing tree is �; x:AI � : >Applying this rule, one see that �I � :> is valid.(let) The typing tree starts with....�; x:AIM :C �D�; x:A; y:C; z:D IN :A�; x:AI let hy; zi=M in N :A :Sin
e FV (let hy; zi=M in N) = FV (M) [(FV (N) n fy; zg) and from thede�nition of
ontext, x 62 FV (N) and x 62 FV (M). Then we
an apply theindu
tion hypothesis: �; y:C; z:DIN :A and �IM :C�D are valid. Applying(let), one gets that �I let hy; zi=M in N :A is valid.�Lemma 3.2.2 (Renaming of variables) Given a valid typing judgment�; x:C IM :Aand z a fresh variable, �; z:CIM [z=x℄:A is valid with a typing-tree of the same depthas the typing tree of �; x:C IM :A.Proof. By indu
tion on the typing tree of �; x:C IM :A.(
) M =
, A = A
 and the typing tree is�; x:C I
 : A
Moreover, M [z=x℄ =
 Applying this rule from s
rat
h, �; z:C I
 : A
 is valid.Hen
e the result is true in this
ase, and the typing tree has a depth of 1.

CHAPTER 3. LAMBDA-CALCULUS 36(x) M = y, so there are two
ases. First, one
an have y = x. A = C and the typingtree is �; x : C I x : CM [z=x℄ = z, so dire
tly from (x)�; z : C I z : Cis valid with typing tree of depth 1.(�) M = lambday:N . The typing tree starts with.... !�; x:C; y:AIN :B�; x:C I �y:N :A)BFrom the de�nition of
on
atenation in typing judgment, x 6= y. From indu
tionhypothesis, �; z:C; y:AIN [z=x℄:B is valid with typing tree !0 of depth the depthof !. Applying (�), one get�; z:C I �y:(N [z=x℄):A)Bsin
e y 6= x, �y:(N [z=x℄) = (�y:N)[z=x℄. So �; z:C IM [z=x℄:A) B is validwith a typing-tree of the same depth as the typing tree of�; x:C IM :A)B:(app) M = NP . The typing tree ! starts with.... !1�; x:C IN : B) A !2�; x:C I P : B�; x:C INP : A (app)d(!) = 1 + max(d(!1); d(!2)). From indu
tion hypothesis�; z:C IN [z=x℄ : B)A and �; z:C I P [z=x℄ : Bare valid and of depth d(!1) and d(!2).From (app) and the fa
t that (NP)[z=x℄ = N [z=x℄P [z=x℄,

CHAPTER 3. LAMBDA-CALCULUS 37
�; z:C I (NP)[z=x℄ : Ais valid of depth d(!).(if) M = if (P ;Q;N). The typing tree ! starts with.... !1�; x:C I P : bit !2�; x:C IQ : A !3�; x:C IN : A�; x:C I if (P ;Q;N) : A (if)d(!) = 1 + max(d(!1); d(!2); d(!3)). From indu
tion hypothesis,�; z:C I P [z=x℄:bit; �; z:C IQ[z=x℄:A and �; z:C IN [z=x℄:Aare valid of depth d(!1), d(!2) and d(!3). Applying (if) and from the de�nitionof substitution, �; z:C I if (P ;Q;N)[z=x℄:Ais valid of depth d(!).(�) M = hM1;M2i, and typing tree ! starts with.... !1�; x:C IM1 : A1 !2�; x:C IM2 : A2�; x:C I hM1;M2i : A1 � Ak (�)d(!) = 1 + max(d(!1); d(!2)). From indu
tion hypothesis,�; z:C IM1[z=x℄:A1 and �; z:C IM2[z=x℄:A2are valid of depth d(!1) and d(!2). Applying (�) and from the de�nition ofsubstitution, �; z:C I hM1;M2i[z=x℄:A1 � A2is valid of depth d(!).

CHAPTER 3. LAMBDA-CALCULUS 38(let) The typing tree starts with....�; x:AIM :C �D�; x:A; y:C; t:D IN :A�; x:AI let hy; ti=M in N :A :By indu
tion hypothesis,�; z:AIM [z=x℄:C �D and �; z:A; y:C; t:D IN [z=x℄:Aare valid. From the de�nition of
ontext, x is di�erent from y and t, so(let hy; ti=M in N)[z=x℄ = (let hy; ti=M [z=x℄ in N [z=x℄). Then applyingthe (let) rule, �; z:AI (let hy; ti=M in N)[z=x℄:Ais valid.(>) M = �, A = > and the typing tree is�; x:C I � :>Moreover, M [z=x℄ = � Applying this rule from s
rat
h, �; z:C I � :> is valid.Hen
e the result is true in this
ase, and the typing tree has a depth of 1.�Lemma 3.2.3 (Substitution) Given�; x1:C1; : : : xn:Cn IM :A;�INi:Ci 8i = 1 : : : n;and � = f xi 7! Ni; i = 1 : : : n g;the typing judgment �I ��(M):A is valid.Proof.The typing-tree of � I ��(M):A is
onstru
ted by indu
tion on the stru
ture ofthe typing tree.

CHAPTER 3. LAMBDA-CALCULUS 39(
) ��(
) =
, then applying the same rule (
), �I
:Ais valid.(x) In this
ase, M = x. Sin
e ��(x) = �(x), there are 2
ases: either x 62 j�j, and sox 2 j�j and �(x) = x: from the rule (x), � I x:A is valid. In the other
ase,x = xi 2 j�j, so A = Ci and �(x) = Mi. But from the hypothesis, �IMi : Ciis valid. So in both
ase, the result is valid.(�) In this
ase, M = �x:N . The typing tree starts with:�; x:C IN :D�I �x:N :C)D��(�x:N) = �z:��0(N) =, with z a fresh variable and �0 = � Æ fx7!zg. FromLemma 3.2.2, �; z:C I N [z=x℄:D is valid, and the typing tree have the samedepth as the one of �; x:C IN :D. By indu
tion hypothesis,�; z:C I ��(N [z=x℄):D:Sin
e ��(N [z=x℄) = ��0(N), applying (�),�I ��(�x:N):C)Dis valid(app) In this
ase M = NP . The typing tree is:�IN :C)D �I P :C�INP : DFrom indu
tion hypothesis, �I ��(N):C)D and �I ��(P):C Applying (app),�I ��(N)��(P) : D is valid. Sin
e ��(NP) = ��(N)��(P).(if) In this
ase M = if (N ;P ;Q). The typing tree is:�IN : bit �I P : C �IQ : C�I if (N ;P ;Q) : CFrom indu
tion hypothesis,�I ��N : bit ; �I ��P :C and �I ��Q:C:

CHAPTER 3. LAMBDA-CALCULUS 40Then, applying (if), �I if (��N ; ��P ; ��Q):C is valid. Sin
eif (��N ; ��P ; ��Q) = ��(if (N ;P ;Q));the result is true in this
ase.(�) M = hM1;M2i. The typing tree starts with�IM1 : A1 �IM2 : A2�I hM1;M2i : A1 � A2By indu
tion hypothesis, for all i, � I ��(Mi) : Ai is valid. Applying (�) andusing the relation ��(hM1;M2i) = h��(M1); ��(M2)i, the typing judgment�I ��(hM1;M2i) : A1 � A2is valid(let) The typing tree starts with....�; x1:C1; : : : xn:Cn IM :C �D�; x1:C1; : : : xn:Cn; y:C; t:D IN :A�; x1:C1; : : : xn:Cn I let hy; ti=M in N :A :By indu
tion hypothesis,�I ��M :C �D and �; y:C; t:D I ��N :Aare valid. From the de�nition of
ontext, x is di�erent from all xi, so��(let hy; ti=M in N) = (let hy; ti=��M in ��N):Then applying the (let) rule,�I ��(let hy; ti=M in N):Ais valid.(>) M = � and the typing judgment is �I � : >��(�) = � so the typing judgment �I ��(�):> is valid.

CHAPTER 3. LAMBDA-CALCULUS 41�Theorem 3.2.4 (Subje
t Redu
tion) If � IM :A is valid and M �!�� N then�IN :A is valid.Proof.It is suÆ
ient to prove it for �!�. We will do that by stru
tural indu
tion onthe derivation of M �!� N : For all valid typing judgments � IM : A, the typingjudgment �IN : A is valid.(�) In that
ase, the rule is (�x:P)Q�!� P [Q=x℄and (�x:P)Q has for unique typing tree....�; x:AI P :B�I �x:P :A)B�IQ:A�I (�x:P)Q:B :From Lemma (3.2.3) one
an dedu
e that �I P [Q=x℄:B is well typed.(if 0) The rule is if (0;M ;N)�!� Nand if (0;M ;N) has for unique typing tree�I 0 : bit �IM : A �IN : A�I if (1;M ;N) : A :There is nothing to do: �IN :A(if 1) For the same reason as above, �IM :A(let) In this
ase the rule islet hx; yi=hM1;M2i in N �!� N [M1=x;M2=y℄

CHAPTER 3. LAMBDA-CALCULUS 42and let hx; yi=hM1;M2i in N has for unique typing tree�IM1:C �IM2:D�I hM1;M2i : C �D �; x:C; y:D IN : A�I let hx; yi=hM1;M2i in N : A (let):Applying Lemma 3.2.3, one
an
on
lude that�IN [M1=x;M2=y℄is valid.(
ong1) The rule is M �!� M 0MN �!� M 0N (
ong1)and MN has for unique typing tree....�IM :A)B�IN :A�IMN :B :By indu
tion hypothesis, �IM 0:A)B is valid. Applying (app), one get�IM 0N :B(
ong2) The proof is similar as for (
ong1): the rule isM �!� M 0MN �!� MN 0 (
ong1)and MN has for unique typing tree the same as above. From the indu
tionhypothesis, �IN 0:A. Applying (app), one get�IMN 0:B(if i) and (�i) The proof is the same as the one for (
ong i).

CHAPTER 3. LAMBDA-CALCULUS 43(�) The (�) rules are all on the same model. Here is the proof for (��).P �!� P 0�x:P �!� �x:P 0 (�)and �x:P has for unique typing tree�; x : AI P : B�I �x:P :A)B:By indu
tion hypothesis, �; x : AI P 0 : B. Applying (�) one get the result:�I �x:P 0:A)B�Corollary 3.2.5 If �IM :A and M �!CBV � N then �IN :A.Proof. Using Theorem 3.2.4 and the fa
t that every
all-by-value redu
tion is alsoa �-redu
tion, the
orollary is true. �Theorem 3.2.6 (Progress) If IM :A is valid, either M is a value, or M redu
esto some term N by
all-by-value.Proof. We prove it by indu
tion of the derivation of IM :A. If M is a value, thereis nothing to prove. If it is not, then there are the following
asesM = NP . By the (�) rule, IN :B) A is valid for some type B, and � I P :B isvalid. By indu
tion hypothesis, either N or P redu
es, or they are both values.If they are both values, then N = �x:N 0 sin
e this is the only value that
anhave type B) A. And thus
all-by-value redu
tion applies with rule (�). Ifone of N or P is not a value, then a
all-by-value redu
tion
an also be applied,by rule (
ong1) or (
ong2).M = if (N ;P ;Q). By the (if) rule, IN : bit is valid. Either N is a value, in whi
h
ase N = 0 or N = 1 and M redu
es by the (if 0) or (if 1) rule, or it is not, and(�if)
an be applied.

CHAPTER 3. LAMBDA-CALCULUS 44M = let hx; yi=N in P . By the (let) rule, IM :A is valid and
omes fromIN :C�D and x:C; y:D I P :A:First
ase N
ould be a value, and then N = hV1; V2i. In this
ase, the (let)redu
tion
an be applied. In the other
ase, by indu
tion N
an be redu
ed.Then �let
an be applied.�3.2.2 Type inferen
e algorithmWith the subje
t redu
tion and the progress theorems, we are able to
ertify thewell-behavior of a program during redu
tion using a type system: A well-typed term
an never produ
e a run-time error. In
onsequen
e, we are interested to know ifgiven a lambda-term, this term
an be well-typed.Given a typable term, there exist a lot of possible types for this term. Considerthe term �xy:xy. All these are valid typing judgments:I�xy:xy:(�)X)) (�)X);I�xy:xy:((�� bit)) �)) ((�� bit)) �);I�xy:xy:((�) Y)) (�� A))) ((�) Y)) (�� A));I�xy:xy:(C) bit)) (C) bit):One
an see that there is a general form form this typing judgment, namely:I�xy:xy:(A)B)) (A)B):More generally, every term in the simply-typed lambda-
al
ulus has a most generaltype. We now make this notion pre
ise.

CHAPTER 3. LAMBDA-CALCULUS 45Type substitution We de�ne a type substitution to be a fun
tion from Vtype totypes. We extend this notion to a fun
tion �� from types to types as follows:��(X) = �(X)��(�) = ���(>) = >��(A)B) = ��(A)) ��(B)��(A� B) = ��(A)� ��(B)Given a typing judgment � = fx1:A1 : : : xn:Ang, we write��� = fx1:��A1 : : : xn:��AngWith the de�nition of type substitution, we are able to say that a type A is saidto be more general than a type B, if there exists a type substitution � su
h that��(A) = B. We also say that B is an instan
e of A. We
an also de�ne this
on
eptfor typing judgments, type derivation and substitutions: � is more general than � ifthere exists � su
h that �� Æ � = � .In the previous example, the typing judgmentI�xy:xy:(X) Y)) (X) Y)is more general than all the other ones we gave.Lemma 3.2.7 Given � and � two type substitutions, �� Æ �= �� Æ �� . �Lemma 3.2.8 Given a valid typing judgment �IM : A, for any substitution �, thetyping judgment ���IM : ��A is valid.Proof.by stru
tural indu
tion on the typing tree of �IM : A.(
) The rule is �I
:A
. For all
 2 Vterm , ��(A
) = A
. Hen
e �� I
:��A
 is valid.(>) is similar as the previous
ase.

CHAPTER 3. LAMBDA-CALCULUS 46(x) The rule is �; x:AI x:A. the image of this typing judgment by � is���; x:��AI x:��Awhi
h is valid applying (x).(�) The rule is �; x : AIM : B�I �x:M : A)BBy indu
tion hypothesis ���; x:��AIM :��Bis valid. Applying (�) and from the de�nition of ��,���I �x:M : ��(A)B)is valid.(app) The rule is �IM : A)B �IN : A�IMN : BBy indu
tion hypothesis ���IM : ��(A)B) and���IN : ��AFrom the de�nition of �� ���IM : ��A) ��Bis valid. Applying (app) ���IMN : ��Bis valid.(if) The rule is �I P : bit �IM : A �IN : A�I if (P ;M ;N) : A

CHAPTER 3. LAMBDA-CALCULUS 47By indu
tion hypothesis���I P : �� bit ; ���IM : ��A and���IN : ��Aare valid. Sin
e �� bit = bit , one
an apply (if) and���I if (P ;M ;N) : ��Ais valid.(�) The rule is �IM1 : A1 �IM2 : A2�I hM1;M2i : A1 � AkBy indu
tion hypothesis ���IM1:��A1 and���IM2:��A2Sin
e ��(A1 � Ak) = ��A1 � ��A2,���I hM1;M2i : ��(A1 � Ak)is valid.(let) The rule is �IN :C�D �; x:C; y:D I P :A�I let hx; yi=N in P :A :By indu
tion hypothesis,���IN :��(C�D) and ���; x:��C; y:��D I P :��A:Sin
e ��(C�D) = ��C���D, one
an apply (let) and���I let hx; yi=N in P : ��Ais valid.�

CHAPTER 3. LAMBDA-CALCULUS 48Uni�ers Given two types A and B, we de�ne a uni�er of A and B to be a typesubstitution � su
h that ��(A) = ��(B). We say that � is prin
ipal, or most general, ifany uni�er �0 of A and B is less general than �. For a
omplete dis
ussion on uni�ers,see [16, p.326℄.Given two types A and B, we
onstru
t a substitution unify(A;B) from the al-gorithm, provided that a uni�er exists for A and B (else the algorithm fails), asfollows: unify(X;X) = ;;unify(�; �) = ;;unify(>;>) = ;;unify(X;B) = fX 7! Bg if X 62 FV (B);unify(B;X) = fX 7! Bg if X 62 FV (B);unify(A)B;C)D) = �� Æ � � = unify(A;C) and� = unify(��(B); ��(D));unify(A�B;C �D) = �� Æ � � = unify(A;C) and� = unify(��(B); ��(D));else fails:For example, a uni�er for X) (Y � bit) and (W) bit))W is(X 7�! (Y � bit)) bit ;W 7�! Y � bit)It maps both types to ((Y � bit)) bit)) (Y � bit).The uni�er is a substitution on types: sometimes it doesn't exist. For example,there is no uni�er forX)Y andW�Z. Sin
e we do not have a re
ursive type system,there is no uni�er for Y and X � Y . Su
h a uni�er would give X � (X � (X � (: : :)))and su
h an in�nite type is not allowed.Lemma 3.2.9 (Uni�
ation) unify(A;B) gives a most general uni�er of A and B,or fails if there is no uni�er.Proof. A sket
h of the proof is given. A
omplete proof
an be found in [16, p.328℄.First we show that unify(A;B) is a uni�er for A and B. We prove it by indu
tion

CHAPTER 3. LAMBDA-CALCULUS 49on the derivation of unify . Then suppose there exists a uni�er � for A and B. Weprove by indu
tion on the derivation of unify(A;B) that � = �� Æ unify(A;B). And sounify(A;B) exists and is more general than any other uni�er, if any: it is a prin
ipaluni�er. �Type inferen
e algorithm. Now, extending the notion of prin
ipal uni�er to typ-ing judgments, infer(�IM : A) is de�ne in Table 7. This de�nition and the followinglemma
ome from [20, p.60℄Lemma 3.2.10 Given any (valid or non valid) typing judgment � I M :B, � =infer(�IM :B) returns the prin
ipal substitution su
h that ���IM :��B is valid, orfails if there is no substitution su
h that ���IM :��B is valid. Su
h a substitution is
alled a uni�er for the typing judgment.Proof.We prove the lemma in two steps:1. If � = infer(� IM :A) exists, then ��� IM :��A is valid, proved by indu
tionon the derivation of infer(�IM :A).infer(�; x:AI x:B) returns � = unify(A;B). So ��A = ��B, and���; x:��AI x:��B is valid.infer(�I � :B) returns � = unify(B;>). Sin
e ��> = >, ��B = >.Hen
e ���I � :��B is valid.infer(�I
:B) returns � = unify(B;A
). For all
 2 Vterm , ��A
 = A
 for anytype substitution � . Thus ��B = A
, and ���I
:��B is valid.infer(�IMN :B) returns �� Æ �, with� = infer(�IM : X)B);� = infer(���IN : ��X) andX a fresh variable:By indu
tion hypothesis, � and � are su
h that ��� I M : ��X) ��Band �� ��� I N : �� ��X are valid. ��� I M : ��X) ��B) is valid then by

CHAPTER 3. LAMBDA-CALCULUS 50
infer(�; x:AI x:B) = unify(A;B)infer(�I � :B) = unify(B;>)infer(�I
:B) = unify(B;A
)infer(�IMN :B) = �� Æ �� = infer(�IM : X)B)� = infer(���IN : ��X)X fresh variableinfer(�I �x:M :B) = �� Æ �� = unify(B;X) Y)� = infer(���; x:��X IM :��Y)X; Y fresh variablesinfer(�I hM;Ni:B) = �� Æ �� Æ �� = unify(B;X � Y)� = infer(���IM :��X)� = infer(�����IN :����Y)X; Y fresh variablesinfer(�I if (P ;M ;N):B) = �� Æ �� Æ �� Æ �� = infer(�I P :Y)� = unify(�Y; bit)� = infer(�����IM :����B)� = infer(�� �����IN :�� ����B)infer(�Ilet hx; yi=M in N :A) = �� Æ �� = infer(�IM :X1 �X2)� = infer(���; x:��X1; y:��X2 IN :��A)X1; X2 fresh variablesTable 7: Type inferen
e algorithm for the simply-typed lambda-
al
ulus

CHAPTER 3. LAMBDA-CALCULUS 51Lemma 3.2.8 �� ���IM : �� ��X) �� ��B is valid. Applying (app),�� ���IMN : �� ��Bis valid.infer(�I �x:M :B) returns �� Æ �, with � = unify(B;X) Y),� = infer(���; x:��X IM :��Y)and X,Y fresh variables. By indu
tion hypothesis, � and � are su
h that��(B) = ��(X)) ��(Y) and�� ���; x:�� ��X IM :�� ��Yis valid. Applying (�) and sin
e �� ��(B) = �� ��(X)) �� ��(Y),�� ���I �x:M :�� ��Bis valid.infer(�I hM;Ni:B) returns �� Æ �� Æ �, with� = unify(B;X � Y);� = infer(���IM :��X);� = infer(�����IN :����Y) andX; Y fresh variables:From indu
tion hypothesis, �����IM :����Xand �� �����IN :�� ����Yare valid, and ��B = ��X � ��Y . Thus�� �����IM :�� ����Xis valid using Lemma 3.2.8, and �� ����B = �� ����X � �� ����Y . Thus, applying(�), �� �����I hM;Ni:�� ����Bis valid.

CHAPTER 3. LAMBDA-CALCULUS 52infer(�I if (P ;M ;N):B) returns �� Æ �� Æ �� Æ �, with� = infer(�I P :Y);� = unify(�Y; bit);� = infer(�����IM :����B) and� = infer(�� �����IN :�� ����B):So by indu
tion hypothesis,���I P :��Y;�� �����IM :�� ����B and���� �����IN :���� ����Bare valid, with ����Y = bit . Applying Lemma 3.2.8,���� �����I P :���� ����Y and���� �����IM :���� ����Bare valid, and ���� ����Y = bit . Applying (if),���� �����I if (P ;M ;N):���� ����Bis valid.infer(�Ilet hx; yi=M in N :A) returns �� Æ �, with� = infer(�IM :X1 �X2)� = infer(���; x:��X1; y:��X2 IN :��A):So by indu
tion hypothesis,���IM :��X1 � ��X2 and�����; x:����X1; y:����X2 IN :����Aare valid. From Lemma 3.2.8,�����IM :����X1 � ����X2is also valid. Applying (let),�����Ilet hx; yi=M in N :����Ais valid.

CHAPTER 3. LAMBDA-CALCULUS 532. If there exists a substitution � su
h that���IM :��Ais valid, then � = infer(� IM :A) exists and �� Æ � = �, proved by stru
turalindu
tion on M .(
) Sin
e A
 does not
ontain any type variables and sin
e ��� I
:��A is equalto ���; x:A
 I
:A
, we have the equality �A = A
, or A = A
. Sin
eunify(A
; A
) = id , � exists and is equal to id . In parti
ular, �� Æ � = �.(>) This
ase is done similarly, repla
ing A
 with >.(x) The typing judgment ���; x:��AIx:��B is valid, then ��A = ��B. In parti
ular,� is a uni�er for A and B. Then a most general uni�er
an be found fromLemma 3.2.9, and it is given by unify(A;B). From the de�nition,infer(�; x:AI x:B) = unify(A;B):Hen
e it exists, and from the property of unify , �� Æ � = �.(app) If ���1; ���2; ��!�INP :��Ais valid, then from the rule (app),���1; ��!�IN :B) ��A���1; ��!�I P :Bare valid. In parti
ular, given a fresh type variable Z, the substitution�0 = � [fX 7! Bg is su
h that��0�1; ��0!�IN : ��0(Z) A)��0�1; ��0!�I P : ��0Zare valid. By indu
tion hypothesis, the inferen
e algorithm su

eeds on�1; !� I N :Z) A, and returns a substitution �1 su
h that ��0 Æ �1 = �0.Sin
e ��0�1; ��0!�I P : ��0Z

CHAPTER 3. LAMBDA-CALCULUS 54is equal to ��0 Æ �1�1; ��0 Æ �1!�I P : ��0 Æ �1Z;by indu
tion hypothesis, the inferen
e algorithm su

eeds also on��1�1; ��1!�I P : ��1Z;and returns a substitution �2 su
h that ��0 Æ ��1 Æ �2 = ��0 Æ �1 = �0. Thesubstitution infer(�1;�2; !�INP :A) is de�ned to be ��1 Æ �2.The proof is similar for the remaining
ases�Theorem 3.2.11 (Type inferen
e algorithm) A given term M is typable if andonly if � = infer(x1:X1; : : : xn:Xn IM : Y)with FV (M) = fx1 : : : xng doesn't fail. Moreover, a prin
ipal typing judgment for Mis x1:�X1; : : : xn:�Xn IM : �YProof.If M is typable and x1:A1; : : : xn:An IM : Bis a valid typing judgment, then� = fX1 7! A1; : : :Xn 7! An; Y 7! Bgis a uni�er for x1:X1; : : : xn:Xn IM : Yhen
e, infer won't fail, and will return a most general uni�er, from Lemma 3.2.10.On the
onverse, if the algorithm does not fail, it gives ba
k a prin
ipal uni�er, sothe term is typable. �

Chapter 4Linear Logi
The type system used in Chapter 3 is based on intuitionisti
 logi
. Linear logi
was introdu
ed by Girard [9℄ as a resour
e sensitive logi
. One of the basi
 rules ofordinary logi
 is the
ontra
tion rule whi
h states that given a valid proposition Aone
an dedu
e A^A. This rule
an be viewed as a dupli
ation of the formula (or ofthe resour
e) A. In linear logi
, the dupli
ation of resour
e is in general not allowed,and the
ontra
tion rule is dropped. Formulas for whi
h dupli
ation is allowed areexpli
itly written as !A.In intuitionisti
 logi
, there are two ways for introdu
ing a
onjun
tion:�I A �I B�I A ^ B �I A �IB�;�I A ^ BThey are in fa
t di�erent: the �rst one is a superposition, and the se
ond one is ajuxtaposition. In intuitionisti
 linear logi
 they yield two di�erent
onjun
tions: the�rst is
alled the additive
onjun
tion and is written & , the se
ond is
alled themultipli
ative
onjun
tion and is written
. � is the additive disjun
tion, and(isthe linear impli
ation:0 for �; > for & ; 1 for
:For a more
omplete dis
ussion, see [11℄.More formally, a formula in intuitionisti
 linear logi
 is de�ned by the following55

CHAPTER 4. LINEAR LOGIC 56abstra
t syntax: A;B;C ::= !Aj (A
B)j (A(B)j (A & B)j (A�B)j 0 j 1 j >:A sequent in intuitionisti
 linear logi
 is a pair�B Awhere � is a set of intuitionisti
 linear logi
 formulas and A is an intuitionisti
 linearlogi
 formula.The rules are found in Table 8. Note the absen
e of stru
tural rules of weakeningand
ontra
tion.To be able to manipulate dupli
able elements in linear logi
, a spe
ial unary
onne
tive is provided. We denote !A a term on whi
h one
an apply weakening and
ontra
tion. We say \bang A" for !A. The rules we need to add are in Table 9A sequent A1; : : : ; AnBB in intuitionisti
 linear logi

an be interpreted as a rulefor transforming resour
es A1 : : : An into a resour
e B. The point is that A1 : : : Anare used up in this pro
ess, and
annot in general be used more than on
e.A good example is the example of the restaurant, inspired by Girard and La-font [10℄. Consider the following menu:fruit or seafood (in season)main
ourseall the
hips you
an eattea or
o�eeYou have two kinds of
hoi
e: the
hoi
e between fruit and seafood is made for you,depending on what is available, and the
hoi
e of tea or
o�ee is let to you. Only onemain
ourse will be brought to you, but you
an eat as many
hips as you want. Thismenu translates into:(fruit� seafood)
main
 !
hips
 (tea &
o�ee)

CHAPTER 4. LINEAR LOGIC 57
Logi
al axiom CUT ruleAB A �B A �; AB B�;�BBMultipli
ative fragment�B A �B B�;�B A
 B B; A�B�B A(B B1�; A; B B C�; A
 B B C �; B B C �B A�;�; A(B B C �B A�; 1B AAdditive fragment�B A �B B�B A & B �B B�B A�B B�;>�; Ai B B�; A1 & A2 B B �; AB C �; B B C�A� B B C �; 0B ATable 8: Derivation rules for intuitionisti
 linear logi

dereli
tion weakening
ontra
tion�; ABB�; !AB B (D) �B B�; !AB B (W) �; !A; !AB B�; !ABB (C) �; !AB B�; !AB!B (!)Table 9: Derivation rules for exponential

CHAPTER 4. LINEAR LOGIC 58In intuitionisti
 linear logi
, if a sequent �BA is provable then all the resour
esin � are used. This might be too strong: If the resour
es represents variables in aprogram, one might want not to use all of them. We need a weaker logi
: We willrepla
e the axiom rule AB Awith �; AB AIn other words, a element
an be dis
arded even if it is not of the form !A. The logi
be
omes the aÆne intuitionisti
 linear logi
, or AILL. This �ts better our needs as
omputer s
ientists. Indeed we want to be able to
reate a fun
tion that will not useits argument. This fragment is therefore the one on whi
h the type system of thelanguage we develop is based: we are able to state whether or not an element
an bedupli
ated, but we may forget any variable we wish to.

Chapter 5The quantum lambda-
al
ulus:Terms
5.1 Quantum StatesWe now turn to the question of de�ning a lambda-
al
ulus for quantum
omputationwith
lassi
al
ontrol.We would like to extend the lambda
al
ulus with the ability to manipulate quan-tum data. We �rst need a syntax to express quantum states in the lambda
al
ulus.In simple
ases, we might simply insert quantum states into a lambda term, su
h as�x:(�j0i+ �j1i):However, in the general
ase, su
h a syntax is insuÆ
ient. Consider for instan
e thelambda term (�y:�f:fpy)(q);where p and q are quantum bits whi
h are jointly in the entangled state jpqi =�j00i+ �j11i. Su
h a state
annot be represented lo
ally by repla
ing p and q withsome
onstant expressions of type qubit. The non-lo
al nature of quantum states thusfor
es us to introdu
e a level of indire
tion into the representation of a state. Thus, torepresent a program, we should have a lambda-termM to en
ode the operations, butalso an exterior n-qubit state Q to store the quantum data of the program. Further,59

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 60to link both parts, we need a third element, whi
h is a fun
tion L from FV (M) tof0; : : : ; n� 1g, su
h that if L(x) = i, the variable x represents the i-th qubit in Q.We also provide several built-in operations for quantum bits. The operator newrepresents a fun
tion that takes a bit (0 or 1) and allo
ates a new qubit of the
orresponding value. We also need to be able to a
t on qubits via unitary operations;thus, we will assume a given set U1 of unitary gates. For simpli
ity we �rst
onsiderour language without tuples so we will restri
t ourselves to unary quantum gates fornow; tuples and n-ary gates will be
onsidered in Chapter 8.In the following examples, we will often use the Hadamard gate H, whi
h weassume to be an element of U1:H = 1p2 1 11 �1 !Finally, we equip the language with an operation meas, whi
h takes a quantum bit,performs a measurement, and returns the
lassi
al bit 0 or 1 whi
h is the result of themeasurement. Of
ourse, the out
ome of this operation is probabilisti
. If U rangesover U1 and x over Vterm , we de�ne a term by the following:RawTerm M;N; P ::= xj MNj �x:Mj if (M ;N ;P)j 0 j 1j measj newj UNote that
ompare to the lambda-
al
ulus from Chapter 3, we have removedpairing, unit and the let operator. These will be re-introdu
ed in Chapter 8.As usual, terms are identi�ed up to �-equivalen
e. In that sense we will write�x:x = �y:y.De�nition 5.1.1 A quantum state is a triple[Q;L;M ℄

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 61where� Q is a normalized ve
tor of
n�1i=0 C 2 , for some n � 0� M is a lambda-term,� L is a fun
tion from W to f0; : : : ; n � 1g, where FV (M) � W � Vterm . L isalso
alled the linking fun
tion.We denote the set of quantum states by S. If n = 0, then we denote the trivialstate ve
tor Q = 1 2 C by Q = ji.A useful subset of S is the subspa
e V of value states:V = f [Q;L; V ℄ 2 S j V is a value gHere, a value is de�ned to be a
onstant, a variable or a lambda-abstra
tion as inChapter 3.The notion of �-equivalen
e extends naturally to quantum states, for instan
e,the states [j1i; fx 7! 0g; �y:x℄ and [j1i; fz 7! 0g; �y:z℄are equivalent. More formally, the �-equivalen
e on quantum states is the smallestequivalen
e relation su
h that if x 2 FV (M) and z 62 FV (M), then[Q;L [fx 7! ig;M ℄ =� [Q;L [fz 7! ig;M [z=x℄℄:We will work under this equivalen
e when speaking of quantum states.Convention 5.1.2In order to simplify the notation, we will often use the following tri
k: we use pito denote the free variable x su
h that L(x) = i. A quantum state is abbreviated by[Q;M 0℄withM 0 =M [pi1=x1℄ : : : [pin=xn℄ if the domain of L is fx1; : : : ; xng, where ik = L(xk).

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 62Redu
tion of the quantum state. We should now address the question of how aquantum state should be redu
ed. One restri
tion is that it is forbidden to dupli
atea quantum bit, due to the no-
loning property of quantum physi
s. Let us illustratethis with an example, using a
all-by-value redu
tion pro
edure. Let us de�ne abinary and operation in our language: and = �xy: if (x; if (y; 1; 0); 0). Now
onsiderthe following term: (�x:and(meas(x)(meas(H x)))) (j0i):Na��vely, we expe
t this to redu
e toand(meas(j0i))(meas(H j0i));then to measure the right argument H j0i, then the left argument whi
h redu
es to 0with probability 1, and then apply the and fun
tion. We expe
t to obtain the result0 with probability 1. Using the quantum state notation, let us redu
e this term moreformally: [j0i; (�x:and(meas(x))(meas(H x)) (p0)℄�!CBV [j0i; and(meas(p0))(meas(H p0))℄In the QRAM, applying H to a qubit is modifying the a
tual state of the qubit. Letus redu
e the right argument (H p0):�!CBV [1p2 (j0i+ j1i) ; and(meas(p0))(meas(p0))℄:Redu
ing the right argument again, we obtain 1 with probability 0:5, assuming thatthe measurement is non-destru
tive. (Indeed, if we used destru
tive measurement,the program would not even be well-de�ned, sin
e we would have a p0 alone):�!CBV [j0i; and(meas(p0))(0)℄:and with probability 0:5: �!CBV [j1i; and(meas(p0))(1)℄:

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 63This redu
es to [j0i; 0℄ with probability 0:5 and to [j1i; 1℄ with probability 0:5. Clearly,this is not the intended result.The program is unpredi
table due to the dupli
ation of p0. The problem derivesfrom the fa
t that a value su
h as p0 does not represent a
onstant, as in the
lassi
allambda
al
ulus, but rather it is a pointer into the quantum state. We never a
t onp0, we a
t on the value it points to. To ensure the predi
tability of programs, it isne
essary to disallow the dupli
ation of terms that
ontain pi's.We will
all an abstra
tion �x:M linear if x appears at most on
e as a free variablein M . We also say that M is linear in x in this
ase.Another problem
an o

ur: let us
all plus the fun
tion whi
h a
ts as the additionmodulo 2 on
lassi
al bits. We
an easily
onstru
t su
h a fun
tion in our language:plus = �xy: if (x; if (y; 0; 1); if (y; 1; 0))Consider the state [ji; (�x:plus x x)(meas(H(new 0)))℄Now redu
e this state using
all-by-value redu
tion. Intuitively this shall redu
e to:�!CBV [j0i; (�x:plus x x)(meas(H p0))℄�!CBV [1p2(j0i+ j1i); (�x:plus x x)(meas p0)℄and then with probability 0:5:[ji; (�x:plus x x)(0)℄ or [ji; (�x:plus x x)(1)℄[ji;plus 0 0℄ or [ji;plus 1 1℄whi
h evaluate both with probability 1 to [ji; 0 ℄Had we redu
ed the same term under a
all-by-name strategy, we would haveobtained in the �rst step[ji;plus (meas(H(new 0))) (meas(H(new 0))))℄;and then [ji; 0 ℄ with probability 0:5 and [ji; 1 ℄ with probability 0:5.

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 64Moreover, if we had mixed the
all-by-value and
all-by-name strategies, the pro-gram
ould have led to an ill-de�ned result: redu
ing by
all-by-value until[p22 (j0i+ j1i); (�x:plus x x)(meas p0)℄and then
hanging to
all-by-name, we would obtain in one step:[p22 (j0i+ j1i); (plus (meas p0) (meas p0)℄;whi
h is not a valid program sin
e there are 2 o

urren
es of p0.In other words, it does not make sense to speak of a general �-redu
tion pro
edurefor the whole quantum state. It is ne
essary to
hoose a redu
tion strategy beforewriting programs.5.2 Probabilisti
 redu
tion systemsDe�nition 5.2.1 We de�ne a probabilisti
 redu
tion system as a tuple (X;U;R; prob)where X is a set of states, U � X is a subset of value states, R � (X n U) � X isa set of redu
tions, and prob : R ! [0; 1℄ is a probability fun
tion, where [0; 1℄ is thereal unit interval. Moreover, we impose the following
onditions:� For any x 2 X, Rx = f x0 j (x; x0) 2 R g is �nite.� Px02Rx prob(x; x0) � 1We
all prob the one-step redu
tion, and we use the following notation:x�!p y when prob(x; y) = pLet us extend prob to the n-step redu
tion:prob0(x; y) = (0 if x 6= y1 if x = yprob1(x; y) = (prob(x; y) if (x; y) 2 R0 elseprobn+1(x; y) = Pz2Rx prob(x; z)probn(z; y)

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 65We use the following notation:x�!np y when probn(x; y) = pWe say that y is rea
hable in one step with non-zero probability from x, denotedx �!>0 y when x �!p y with p > 0. We say that y is rea
hable with non-zeroprobability from x, denoted x �!�>0 y when there exists n su
h that x �!np y withp > 0.We
an then
ompute the probability to rea
h u 2 U from x: It is a fun
tion fromX � U to R de�ned by: probU(x; u) = 1Xn=0 probn(x; u)The total probability for rea
hing U from x is:probU(x) = 1Xn=0Xu2U probn(x; u)On the other hand, there is also the probability to diverge from x, or never rea
hinganything. This value is: prob1(x) = limn!1Xy2X probn(x; y)Lemma 5.2.2 For all x 2 X, probU(x) + prob1(x) � 1.We de�ne the error probability of x to be the numberproberr(x) = 1� probU(x)� prob1(x)De�nition 5.2.3 We
an de�ne a notion of equivalen
e in X:x � y i� 8u 2 U (probU(x; u) = probU(y; u)prob1(x) = prob1(y)

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 66De�nition 5.2.4 In addition to the notion of rea
hability with non-zero probability,there is also a weaker notion of rea
hability, given by R: We will say that y is rea
hablefrom x if xRy. By the properties of prob,x�!>0 y implies x ywith x y for xRy. Let us denote by �!� the relation su
h thatx � y i� 9n xRnywith Rn de�ned as the n-th
omposition of R. Similarly,x�!�>0 y implies x � yConsistent states and error-states. In a probabilisti
 redu
tion system, a statex is
alled an error-state if x 62 U andXx02X prob(x; x0) < 1An element x 2 X is
onsistent if there is no error-state e su
h that x � eLemma 5.2.5 If x is
onsistent, then proberr(x) = 0.However, the
onverse is false: De�ne� X = f0; 1; 2g� U = f2g� prob and R are de�ned by 0R0 and 0�!0:5 00R1 and 0�!0 10R2 and 0�!0:5 2Here (X;U;R; prob) is a probabilisti
 redu
tion system. 1 is an error state, so 0 isnot
onsistent but proberr(x) = 0.

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 67Remark 5.2.6 We need the weaker notion of rea
hability x � y, in addition torea
hability with non-zero probability x�!>0�y, be
ause a null probability of gettinga
ertain result is not an absolute warranty of its impossibility. In the QRAM, supposewe have a qubit in state j0i. Measuring it
annot theoreti
ally yield the value 1,but in pra
ti
e, this might happen with small probability, due to impre
ision of thephysi
al operations and de
oheren
e. What will happen if we measure this qubitand get 1? We need to be sure that even in this
ase the program will not
rash.Hen
e we separate in a sense the null probability of getting a
ertain result, and the
omputational impossibility.5.3 Quantum redu
tionWe need a deterministi
 pro
edure to
hoose whi
h redex to redu
e. Let us analyzea
all by value pro
edure, sin
e this is the most intuitive pro
edure. Note that theredu
tion itself is probabilisti
, but the
hoi
e of redex is deterministi
.Call-by-value redu
tion. We de�ne a probabilisti

all-by-value redu
tion pro
e-dure in Table 10. We write M�!CBV pN if M redu
es to N with probability p, orM �!pN for short. As said before, the redu
tion in the
lassi
al part of the
al
ulusis the usual one. Re
all that we write [Q;M 0℄ as an abbreviation for a quantum state[Q;L;M ℄ by Convention 5.1 on page 61.Dis
ussion. In the rule (meas), if Q = �jQ0i+ �jQ1i is normalized withjQ0i =Pi �ij�0i i
 j0i
 j 0i i;jQ1i =Pi �ij�1i i
 j1i
 j 1i i;and j0i and j1i being the i-th qubit, we write �0 = j�j2 and �1 = j�j2. In the rule(new), Q is in a spa
e of dimension 2n. In the rule (U), if Q is in a spa
e of dimension2n, let Q0 = (Ij
 U
 In�j�1)(Q). In any
ase, V is a value.A weaker relation. We de�ne a weaker relation . This relation models thetransformations that
an happen due to de
oheren
e and impre
ision of physi
al

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 68

[Q; (�x:M)V ℄�!1 [Q;M [V=x℄℄ (�)[�jQ0i+ �jQ1i;meas pi℄�!�0 [jQ0i; 0℄ (meas)[�jQ0i+ �jQ1i;meas pi℄�!�1 [jQ1i; 1℄ (meas)[Q; new 0℄�!1 [Q
 j0i; pn℄ (new0)[Q; new 1℄�!1 [Q
 j1i; pn℄ (new1)[Q;U pj℄�!1 [Q0; pj℄ (U)[Q;N ℄�!p [Q0; N 0℄[Q;MN ℄�!p [Q0;MN 0℄ (
ong1)[Q;M ℄�!p [Q0;M 0℄[Q;MV ℄�!p [Q0;M 0V ℄ (
ong2)[Q; if (0;M ;N)℄�!1 [Q;N ℄ (if 0)[Q; if (1;M ;N)℄�!1 [Q;M ℄ (if 1)[Q;P ℄�!p [Q0; P 0℄[Q; if (P ;M ;N)℄�!p [Q0; if (P 0;M ;N)℄ (�if)Table 10: Quantum
all-by-value redu
tion

CHAPTER 5. THE QUANTUM LAMBDA-CALCULUS: TERMS 69operations. We de�ne [Q;M ℄ � [Q0;M 0℄ is [Q;M ℄ �!� p[Q0;M 0℄, even when p = 0,plus the additional rule, if Q and Q0 are in the same ve
tor spa
e:[Q;M ℄ [Q0;M ℄Lemma 5.3.1 Let prob be the fun
tion su
h that prob(x; y) = p if x �!p y and 0else. If x; y 2 S (S;V; ; prob) is a probabilisti
 redu
tion system. �Evidently, this probabilisti
 redu
tion system has error states, for example,[Q;H(�x:x)℄:Su
h error states
orrespond to run-time errors. In the next
hapter, we introdu
e atype system designed to rule out su
h error states.

Chapter 6The quantum lambda-
al
ulus:TypesAs we saw in Chapter 3, a type system is a powerful tool to prove the good behaviora program during the redu
tion. In our language, there are two
lass of expressions:Those whi
h
an be dupli
ated, su
h as for example [ji; �x:x℄, and those who
annot,for example [j0i; p0℄. A suitable type system would take this
onstraint in a

ount.As seen in Chapter 4, the linear logi
 is a resour
e sensitive logi
. Let us base ourtype system on this logi
. A well-typed term M :!A means that M
an be dupli
ated.We need also some type
onstants. In Chapter 3 there was only one
onstant typeneeded, namely bit . In this language, we need bit , but also a type
onstant qbit tobe able to manipulate qubits.A di�eren
e with the simply-typed lambda-
al
ulus of Chapter 3 is the following:A well-typed term M of type !A
an be regarded as non-dupli
able. In parti
ular, ifx is a dupli
able variable, it
an appear in a term whi
h will use x only on
e. Thenotion we need to add is the notion of subtyping, noted <:. A<:B means that ifM [x℄is typable when x is of type A, then M is also typable when x is of type B.
70

CHAPTER 6. THE QUANTUM LAMBDA-CALCULUS: TYPES 71
� <: � (ax) A<: B!A <:B (D) X <:X (var)!A<:B!A<:!B (!) A <: A0 B <: B0A0(B <: A(B0 (()Table 11: Subtyping relation: First set of rules6.1 SubtypingLet us de�ne a type system. We are going to de�ne it together with an subtypingrelation <:. We need
onstant types and types for abstra
tions (the fun
tions). More-over, we need a notion of dupli
ability of term. We want to be able to say whetheror not a term
an be dupli
ated. For this, we use the notation of linear logi
. Let usde�ne: qType A;B ::= �j Xj !Aj (A(B)where � ranges over a set of type
onstants, X ranges over a
ountable set of typevariables, and A(B stand for \fun
tion with argument of type A whi
h returns aresult of type B". We want at least two type
onstants, namely bit and qbit . Thenotation \!" is a
ag to state that the typed term is dupli
able. We will
all a type\exponential" if it is written \!A".Notation. If n � 0, the notation (n)(A) stands for!!! : : :!!| {z }n timesALet us de�ne a subtyping relation <: on this type system.

CHAPTER 6. THE QUANTUM LAMBDA-CALCULUS: TYPES 72Lemma 6.1.1 For any type A and B, if A <: B and (m = 0) _ (n � 1), then(n)(A)<: (m)(B).Proof. By indu
tion on m:� If m = 0: let us show by indu
tion that for all n integer, (n)(A)<: B{ If n = 0, by hypothesis A<: B.{ If it is true for n, we have: (ind:hyp:)(n)(A)<: B(n+ 1)(A)<:B (D)� m > 0: n � 1 by hypothesis, and so: (ind:hyp:)(n)(A)<: (m)(B)(n)(A)<: (m+ 1)(B) (!)� Noti
e that one
an rewrite types using the notation:qType A;B ::= (n)(�i)j (n)(X); (n)(Y) : : :j (n)(A(B)with n 2 N .The rules
an be re-written:The two sets of rules are equivalent.Proof that rules on Table 12 implies rules on Table 11(var) Follows dire
tly from Lemma 6.1.1.(�) Follows dire
tly from Lemma 6.1.1.((2) We know that A<:A0 and B<:B0. So by (() we have A0(B<:A(B0. Andby Lemma 6.1.1 we have obtained the desired result.�

CHAPTER 6. THE QUANTUM LAMBDA-CALCULUS: TYPES 73
(m = 0) _ (n � 1)(n)(X)<: (m)(X) (var2)�i � �j (m = 0) _ (n � 1)(n)(�i)<: (m)(�j) (�)A<: A0 B <:B0 (m = 0) _ (n � 1)(n)(A0(B) <: (m)(A(B0) ((2)Table 12: Subtyping relation: Se
ond set of rulesProof that rules on Table 11 implies rules on Table 12 By indu
tion on theproof that A<: B:� If the last rule is (var) or (ax), then use it also in the new proof.� If the last rule is ((), use ((2), with m = n = 0.� If the last rule is (!) or (D), then the proof will have a sequen
e of these tworules, up to either (var) or (ax), or (().(var) A = (n)(X) and B = (m)(X) for X some type variable, and m = 0 orn � 1. We
an
on
atenate this sequen
e with the rule (var2).(ax) A = (n)(�i) and B = (m)(�j) with �i<:�j and n � 1. We
an
on
atenatethis sequen
e with the rule (�).(() A = (n)(A1(A2) and B = (m)(B1(B2) with A2 <: B2, B1 <: A1 andm = 0 or n � 1. We
an
on
atenate this sequen
e with the rule ((2).�Lemma 6.1.2 A <:B has a unique derivation within the rules from Table 12. �Lemma 6.1.3 (qType; <:) is re
exive and transitive.

CHAPTER 6. THE QUANTUM LAMBDA-CALCULUS: TYPES 74Proof. By indu
tion using the rules from Table 12, and the transitivity of theimpli
ation in the equivalen
e:(m = 0) _ (n � 1) i� (m � 1)) (n � 1)� We
an de�ne an equivalen
e relation + byA + B i� (A<: B and B <: A)Lemma 6.1.4 (qType= +; <:) is a poset. �Lemma 6.1.5 If A<:!B, then there exists C su
h that A =!C.Proof. Using the �rst set of rules, A<:!B
an only
ome from (D) or (!). In both
ases, A is of the form !C. �6.2 Typing rulesWe need to de�ne what it means for a quantum state [Q;L;M ℄ to be typable. It turnsout that the typing does not depend on Q and L, but only on M . Now, given a termM , we need to be able to say whether or not it is typable. As usual, we introdu
etyping judgments to deal with terms that may have free variables. Note that the freevariables of M whi
h are in the domain of L have to be of type qbit .A quantum typing judgment is a tuple�BM : Bwhere M is a term, B is a qType, and � is a typing
ontext. As usual we denote� by fx1 : A1; : : : xn : Ang, with Ai = �f (xi). If � = fx1:A1; : : : xn:Ang, we denote!� = fx1:!A1; : : : xn:!Ang.

CHAPTER 6. THE QUANTUM LAMBDA-CALCULUS: TYPES 75
For A and B in qType:The axioms: For
 a
onstant term,A<: B�; x : AB x : B (ax1) A
 <:B�B
 : B (ax2)For the if term,�1; !�B P : bit �2; !�BM : A �2; !�BN : A�1;�2; !�B if (P ;M ;N) : A (if)The appli
ation:�1; !�BM : A(B �2; !�BN : A�1;�2; !�BMN : B (app)The lambda, where x 62 j�j: If FV (M) \ j�j = ;:x : A;�BM : B�B �x:M : A(B (�1) �; !�; x : ABM : B�; !�B �x:M : (n + 1)(A(B) (�2)Table 13: Typing rules for the quantum lambda-
al
ulusBefore we give the typing rules, we give the types for term
onstants Let us �x atype assignment
 7! A
, from the set of
onstant terms to qType:8>>>>>>><>>>>>>>:

0 7! ! bit1 7! ! bitnew 7! !(bit(qbit)U 7! !(qbit(qbit)meas 7! !(qbit(! bit)Remark 6.2.1 we set new :!(bit(qbit). We
ould also have put !bit in pla
e ofbit, sin
e we want a bit to be always dupli
able. However, this will be a
orollary ofthe typing rules, and we therefore put the most general type for the
onstant.The rules for
onstru
ting valid quantum typing judgments are shown in Table 13.We will say that a quantum state [Q;L;M ℄ is typable if there exists a type A su
h

CHAPTER 6. THE QUANTUM LAMBDA-CALCULUS: TYPES 76that x1: qbit ; : : : xn: qbit BM :Ais valid, with fx1 : : : xng to be the domain of Q.6.3 ExamplesFirst let's illustrate the lambda-rules. Consider the following state:[ji; �x:H(new x)℄:This is a fun
tion fed with an argument x, supposed to be a bit, whi
h returns aqubit equal to Hjxi. One
an guess a type for the lambda-term:bit(qbitIf the term is well-typed, then the following typing judgment is derivable:B�x:H(new x): bit(qbit :Indeed, a typing derivation is:!(qbit(qbit)<: qbit(qbitBH: qbit(qbit (
) !(bit(qbit)<: bit(qbitB new : bit(qbit (
) bit <: bitx: bit Bx: bit (x)x: bit B(new x): qbit (app)x: bit BH(new x): qbit (app)B�x:H(new x):(bit(qbit): (�1)Remark that in this example, the fun
tion is linear in x. Even if a bit is alwaysdupli
able, we don't need this feature in this term. This is expressed by the absen
eof exponential on the argument bit . Remark that !(bit(qbit) is also a valid type forthis term: sin
e the
ontext is empty, one
an apply the typing rule (�2). Indeed, we
an dupli
ate as needed the fun
tion: it is already a value, and there is no referen
eto any pre-existing qubit.However sometimes a fun
tion
an be non-dupli
able. Consider the quantumstate: [1p2(j0i+ j1i); fx 7! 0g; �y:x℄:

CHAPTER 6. THE QUANTUM LAMBDA-CALCULUS: TYPES 77This is a well-de�ned quantum state, but the fun
tion is non-dupli
able. The variablex free in the lambda-term is a pointer to the �rst qubit in the QRAM. This shoulddisallow us to dupli
ate the term. Indeed, the typing judgmentx: qbit B�y:x:A(qbitis valid with typing derivationx: qbit ; y:AB x:A(qbit (x)x: qbit B�y:x:A(qbit ; (�1)but x: qbit B�y:x:!(A(qbit)is not: the variable x is free in the term but appear to be non-dupli
able in the
ontext: the rule (�2)
annot be applied.Sin
e the redu
tion strategy is
all-by-value, a term is dupli
able if and only ifits value is dupli
able. A term is always redu
ed to a value before any possibledupli
ation. As an example,
onsider the state [ji; (new 1)℄. This state does not
ontain any non-dupli
able element, but it redu
es in one step to [j1i; p0℄. And as amatter of fa
t, if it was dupli
able, the typing tree would have been:!(bit(qbit)<: bit(! qbitB new : bit(! qbit ! bit <: bitB1: bitB new 1:! qbit :But !(bit(qbit)<: bit(! qbit is not derivable, sin
e qbit is not a subtype of ! qbit .However, the state [j0i; fx 7! 0g;meas x℄ is dupli
able, even if a qubit appears tobe embedded inside the lambda-term. This state redu
es in one step to [j0i; fx 7!0g; 0℄, and x: qbit B1:! bit is perfe
tly derivable, from the rule for
onstants.Let's
onsider a higher-order term:�xy:x(xy):This is a fun
tion of two arguments whi
h is not linear in x. It
an be typed in thefollowing way: B�xy:x(xy):!(A(A)(!(A(A):

CHAPTER 6. THE QUANTUM LAMBDA-CALCULUS: TYPES 78The argument x of the fun
tion has to be dupli
able. For example the term(�xy:x(xy))His typable. A valid typing judgment isB(�xy:x(xy))H:!(qbit(qbit):The typing judgment x: qbit B(�xy:x(xy))�y:x: qbit(qbitis not, however, sin
e �y:x is not dupli
able.

Chapter 7Properties of quantum typingjudgments
7.1 Preliminary lemmasLemma 7.1.1 If x 62 FV (M),�; x : ABM : B implies �BM : B:Proof. We prove this by stru
tural indu
tion on the proof �; x:A BM : B, as wedid it in Chapter 3, Lemma 3.2.1. �Lemma 7.1.2 If A is in qType,�BM : A implies �;�BM : A:Proof. By indu
tion on the size on the proof of �BM : A. �De�nition 7.1.3 We extend the subtyping relation to
ontexts by:�<: �0 i� j�0j = j�j and 8x 2 j�0j �f (x) <: �0f (x):Note that this relation is re
exive and transitive.79

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 80Lemma 7.1.4 If the typing judgement �BN : A is valid and if �<: � and A<:B,then �BN : Bis also valid.Proof. By indu
tion on the stru
ture of N :� If N is a
onstant term, we get the result by the axiom rule.� If N is a variable x, then �f(x) = A0, with A0 <: A. If A <: B, by transitivity,A0<:B �<:� so sin
e x belongs to j�j, x 2 j�j, and �f(x)<:A0. By transitivity�f(x) <:B is true. Hen
e, by the (ax1) rule,�B x : Bis veri�ed.� If N =MP , �BN : A
omes from�01; !�BM : C(A �02; !�B P : C�01;�02; !�BMP : A; (app)with the split � = (�01;�02; !�). Sin
e �<: �, � splits in (�01;�02; !) su
h that�01 <: �01;�02 <: �02;	 <: �:Sin
e A<:B, C(A<: C(B. So by indu
tion hypothesis:�01; !	 B M : C(B and�02; !	 B P : C:Applying (app) we get �01;�02; !	BMP : B;whi
h is exa
tly �BMP : B:And we get the result.

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 81� If N = if (M ;P ;Q), the idea is the same as for the produ
t: we have to
ut �and � in pie
es and to apply the indu
tion hypothesis. Then apply again thelaw (if).� If N = �x:M then only 2 rules
an apply: (�1) or (�2). In both
ases, A =(n)(C (D). Sin
e A <: B, from the reversibility of the set (2) of subtypingrules, B is of the form (m)(E(F), m = 0 or n � 1, E <: C and D <: F . Letus study the 2
ases:(�1): n = 0, so m = 0, and the rule says:�; x : C BM : D�B �x:M : C(D: (�1)Then sin
e �<: � and E <: C,(�; x : E)<: (�; x : C):By indu
tion hypothesis we get�; x : E BM : F:Applying (�1) we have the result.(�2): n � 1. The rule is: !�1;�2; x : C BM : D!�1;�2 B �x:M : (n)(C(D); (�2)where � = (!�1;�2), and j�2j \ FV (M) = ;. Let us split � in (�1;�2),with j�1j = j�1j and j�2j = j�2j. For all x in j�1j, �1f(x)<:!�1f(x). FromLemma 6.1.5, �1f(x) is banged. Thus �1
an be re-written as !�1, and wehave (!�1;�2; x : E)<: (!�1;�2; x : C);!�1;�2; x : C BM : D;D <: F:Applying the indu
tion hypothesis,!�1;�2; x : E BM : F:

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 82Sin
e j�2j = j�2j, j�2j \ FV (M) = ;. So either (�2) or (�1)
an apply. Ineither
ase, !�1;�2;B�x:M : (m)(E(F):�Lemma 7.1.5 If V is a value su
h that` �B V :!AThen 8x 2 FV (V) 9U 2 qType �f(x) =!U:Proof.� If V is a
onstant
: The term is
losed, hen
e by va
uity we have the result.� If V = �x:M , the only rule that applies is (�2), and � splits into (�1; !�2) withFV (M)\j�1j = ;. So every free variable y ex
ept maybe x inM is exponential.Sin
e FV (�x:M) = (FV (M) n fxg), the Lemma is also true in this
ase.�Lemma 7.1.6 For A and B qType, and V a value, if !�;�2; x : A B M : B and!�;�1 B V : A are valid, then �1;�2; !�BM [V=x℄ : Bis valid.Proof. Let ! be a proof for !�;�2; x : ABM : B:We prove it by stru
tural indu
tion on !. Let !�;�1 B V : A be a valid typingjudgment.� If ! is an axiom, there are three
ases.

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 831) We
an have M = y, y 6= x. Then y 2 j!�;�2j, with (!�;�2)f(y) = A0.A0 <: B by the axiom rule. y 2 j�1;�2; !�j then�1;�2; !�B y : Bis a result of (ax1). Sin
e M [V=x℄ = y, the lemma is veri�ed.2) We
an have M = x. Then A <: B by the hypothesis of (ax1). ByLemma 7.1.2, sin
e !�;�1 B V : A we get that�1;�2; !�B V : A:By Lemma 7.1.4, �1;�2; !�B V : B:And sin
e M [V=x℄ = V , the lemma is veri�ed.3) Finally, M
an be a
onstant: M =
. So A
 <:B. (ax2) says that�1;�2; !�B
 : Bis also true. Sin
e M [V=x℄ =
 =M . we have also the result.� Else, if M = �y:P . Sin
e M is �-equivalent to �z:P [z=y℄, z a fresh variable,we
an suppose without lost of generality that y 6= x, y 62 j�1j, y 62 j�2j andy 62 j�j. And so M [V=x℄ = �y:P [V=x℄. M is a lambda-abstra
tion, so the �rstrule to apply is: �x : A;�2; !�; y : C B P : Bx : A;�2; !�B �y:P : (n)(C(B): (�i)for some n integer: if n = 0, we apply (�1), else we apply (�2)n = 0) Then we apply (�1). By indu
tion hypothesis, the lemma is true for � .Then we have: �1;�2; !�; y : C B P [V=x℄ : B:

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 84And by applying the (�1) rule,�1;�2; !�B �y:P [V=x℄ : C(Band thus �1;�2; !�BM [V=x℄ : C(B;and the lemma is veri�edn > 0) Then we apply (�2): If x is a free variable of P , then A is exponential bythe (�2) rule, and applying the indu
tion hypothesis,�1;�2; !�; y : C B P [V=x℄ : Bis valid. Let us write � = (�1;�2; !�):Sin
e A is exponential, by Lemma 7.1.5, for all z in FV (V), �f (z) isexponential. By the (�2) rule, any free variable z of P is exponential. Sin
eFV (P [V=x℄) = FV (V) [(FV (P) n fxg), one
an split � into (!�1;�2),with j�1j = FV (P [V=x℄). Then the hypothesis for rule (�2) is veri�ed,and we
an apply it:�1;�2; !�;B�y:P [V=x℄ : (n)(C(B);and the lemma is veri�ed.If x is not a free variable of P , then the substitution let the term un
hanged,and we only add to the
ontext some variables that are not free in P usingLemma 7.1.2: we
an still apply (�2), and get the result.� or if M = PR.(�2; !�; x : A) splits in (�21;�22; !�0) with the rule:�1 �2�21;�22; !�0 B PR : B; (app)and �1 = �1�21; !�0 B P : C(B;�2 = �2�22; !�0 B R : C:

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 85There are 3
ases:1) x
an be element of j!�0j. The A =!A0 and (x :!A0) is both in �1 and �2.By indu
tion hypothesis, if we split !�0 in (!�00; x :!A0), we
an
on
ludethat �1;�21; !�00 B P [V=x℄ : C(B and�1;�22; !�00 BR[V=x℄ : C:A is exponential, so by Lemma 7.1.5, �1 splits in 2 parts: (!�11;�12) withFV (V) \ j�12j = ;. Sin
e no free variable of PR is in j�1j, and sin
eFV (P [V=x℄) = (FV (P) n fxg) [FV (V), we haveFV (P [V=x℄) \ j�12j= FV (R[V=x℄) \ j�12j= ;:By Lemma 7.1.1, one
an then �nd a proof for!�11;�21; !�00 B P [V=x℄ : C(Band !�11;�22; !�00 BR[V=x℄ : C:Then applying (app) we get!�11;�21;�22; !�00 B P [V=x℄R[V=x℄ : B:Applying Lemma 7.1.2, and sin
e (PR)[V=x℄ = P [V=x℄R[V=x℄, we get:�1;�21;�22; !�00 B (PR)[V=x℄ : B:And renaming the
ontext, sin
e(�2; !�; x : A) = (�21;�22; !�00; x : A);we have what we want:�1;�2; !�B (PR)[V=x℄ : B:

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 862) x
an be element of j�21j. That means that x is only free in P . In this
ase, R[V=x℄ = R. In this
ase, (x : A) o

urs only in �1. We apply theindu
tion hypothesis on �1 and get�1;�021; !�0 B P [V=x℄ : C(B;where �21 = (�021; x : A). Applying (app) we get the result.3) If x is element of j�22j, the pro
ess is the same as in the previous
ase:That means that x is only free variable of R. In this
ase, P [V=x℄ = P . Inthis
ase, x : A o

ur only in (�2). We apply the indu
tion hypothesis on�2 and get �022; !�0 B R[V=x℄ : C;where �22 = (�022; x : A). Applying (app) we get the result.� at last, if M = if (P ;N ;R), we apply the same
ases as above.�Corollary 7.1.7 If� �1; !�; x : ABM : B,� �2; !�B V : (�)A,then �1;�2; !�BM [V=x℄ : B.Proof. From Lemma 7.1.6 and Lemma 7.1.4. �7.2 Subje
t redu
tionTheorem 7.2.1 If � BM :U is valid and [Q;L;M ℄ � [Q0; L0;M 0℄ then �0 BM 0:Uis valid, where �0 = �; x1: qbit ; : : : xn: qbit and jL0j n jLj = fx1; : : : xng.

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 87Proof We are going to restri
t the study to
all-by-value, it extends easily to .Sin
e it is a relation de�ned by indu
tion, we prove it by indu
tion on the derivationof the redu
tion.� For the rule [Q; (�x:M)V ℄�!1 [Q;M [V=x℄℄:The typing judgment �B (�x:M)V : B is derived by the typing tree!�;�1 B V : A !�;�2; x : ABM : B!�;�2 B �x:M : A(B!�;�1;�2 B (�x:M)V : B;when � splits into (!�;�1;�2). Using Lemma 7.1.7, sin
e!�;�1 B V : A and !�;�2; x : ABM : B;the typing tree !�;�1;�2BM [V=x℄:B is valid. the theorem is true, with L = L0.� The rules for meas are[�jQ0i+ �jQ1i;meas pi℄�!�0 [jQ0i; 0℄;[�jQ0i+ �jQ1i;meas pi℄�!�1 [jQ1i; 1℄:We study the �rst
ase, the se
ond is similar. If �; !�; x : qbit Bmeas x : B isvalid it must
ome from:!(qbit(bit)<: A(B�1!�Bmeas : A(B (ax) qbit <:A�2; !�; x : qbit Bx : A (ax1)�; !�; x : qbit Bmeas x : B; (app)with � = (�1;�2).From the subtyping rule ((2), bit <:B and A <: qtype. Hen
e A = qbit andB = bit , and �1;� B 0: bit is a valid typing judgment. Using Lemma 7.1.2,�1; !�; x: qbit B0: bit is also valid: The theorem is true in this
ase.

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 88� The rules for new are, if Q is in a spa
e of dimension 2n,[Q; new 0℄�!1 [Q
 j0i; pn℄;[Q; new 1℄�!1 [Q
 j1i; pn℄:We study the �rst
ase, the se
ond is similar.If �B new 0:B is valid it
omes from!(bit(qbit)<: A(B�1; !�B new :A(B ! bit <:A�2; !�B 0:A�1;�2; !�B new 0:B; (app)for some splitting � = (�1;�2; !�). Thus qbit <:B, and then B = qbit . Thestate [Q
 j0i; pn℄ is [Q
 j0i; L [fx 7! ngx℄, if [Q; new 0℄ = [Q;L; new 0℄.In parti
ular one
an
hoose a variable x whi
h is not in j�j, by �-equivalen
e.Then the typing judgment �; x: qbit Bx: qbit is valid, and the theorem is true inthis
ase.� The idea is the same for H.� The �rst indu
tion rule is: N �!N 0MN �!MN 0:Sin
e N and N 0 have the same type by indu
tion hypothesis, MN and MN 0have the same type by (app).� The se
ond indu
tion rule is: M �!M 0MV �!M 0V:Sin
e M and M 0 have the same type by indu
tion hypothesis, MV and M 0Vhave the same type by (app).� For the if rules, it follows dire
tly from the typing rule.�

CHAPTER 7. PROPERTIES OF QUANTUM TYPING JUDGMENTS 897.3 Progress theoremDe�nition 7.3.1 A program is de�ned as a quantum state [Q;L;M ℄, where thereexists a type B su
h that, if � = fx : qbit j x 2 FV (M)g,�BM : Bis a valid quantum typing judgment.Theorem 7.3.2 (Progress) Let [Q;M ℄ be a typable program, then it is
onsistent,as de�ned in Se
tion 5.2 on page 66, i.e. it
an never redu
e to an error state. Hen
eany
losed well-typed term either
onverges to a value, or diverges.Proof We prove that for all programs [Q;M ℄, either it is a value, or there exists atleast one M 0 su
h that M �!M 0. We do it by indu
tion on the proof of validity ofthe typing judgment. There are two
ases. Either it is a value, in whi
h
ase there isnothing to do, or it is not, and the only 2 rules that apply are (app) and (if).(app) In this
ase M = PQ. �1 B P : B(A �2 BQ : B�B PQ : A;with � = (�1;�2) = fx : qbit jx 2 FV (M)g:Sin
e FV (M) = FV (P) [FV (Q), and they are disjoint, the two typing judg-ments we have are of the form required by the theorem. So by indu
tion hy-pothesis, either we
an redu
e Q, and we are done, or it is a value. If it is avalue, let us study P : P is also either redu
ible, and then we are done, or it isa value. If it is a value, then either it is an abstra
tion and PQ is redu
ible, orit is a
onstant fun
tion, new , meas or H. Sin
e the typing judgment is valid,we are done, we
an redu
e in this last
ase.(if) The if statement is similar: M = if (P ;Q;R), and either we
an redu
e P , orit is a value, so 0 or 1 and we
an redu
e M in Q or R.So by indu
tion any
losed well-typed term is
onsistent. �

Chapter 8Extension of the language
8.1 Extended languageLet us extend the language with produ
t types . Extended terms and types arede�ned in Tables 14 and 15. In this
ase we allow the Un to be unitary operations ofn qubits. For example if U2 is a binary unitary gate, we use it as follows:U2 :!(qbit
 qbit(qbit
 qbit)We add to the previous de�nition a notion of pairs: as in simply-typed lambda-
al
ulus, we will denote a pair by hM1;M2i:Tuples are de�ned as
ni=0Ai = A1
 (A2
 (A3 : : :) : : :);hM1; : : :Mni = hM1; hM2; hM3 : : : i : : : ii:Free variable, substitution We extend the notion of free variable and substitutionwith the same de�nition as in Chapter 3, Tables 2 and 3.Typing rules and redu
tion steps The typing rules to add are in Table 16. Theredu
tion pro
edure for these new terms is found in Table 1790

CHAPTER 8. EXTENSION OF THE LANGUAGE 91

RawTerm M;N; P ::= xj MNj �x:Mj if (M ;N ;P)j 0j 1j measj newj Unj �j hM;Nij let hx; yi=M in NV alue U; V ::= xj �x:Mj 0j 1j measj newj Unj �j hU; V iTable 14: Extended terms

CHAPTER 8. EXTENSION OF THE LANGUAGE 92
qType A;B ::= (n)(�)j (n)(>)j (n)(X)j (n)(A(B)j (n)(A
 B)The subtyping relation is extended to(m = 0) _ (n � 1)(n)(>) <: (m)(>) (>)(m = 0) _ (n � 1) A1 <: B1 A2 <:B2(n)(A1
 A2)<: (m)(B1
 B2) (
)Table 15: Extended types8.2 Cartesian produ
t versus Tensor produ
tWe use in our language the tensor produ
t instead of a
artesian produ
t. The reasonis the following: If we de�ne our produ
t as
artesian, we need 2 proje
tions �1 and�2: �1 : A�B ! A�2 : A�B ! BThen there has to be a bije
tionh�1(M); �2(M)i $MBut su
h a proje
tion
annot exists: if M is not dupli
able, we do not have the rightto write h�1(M); �2(M)i. This is not linear in M .Thus, we have to take
are of the fa
t that we
an have non-dupli
able terms ina tuple. Let us take an example:� 1p2(j00i+ j11i); hp0; p1i�is a perfe
tly valid quantum state: in the term M = hp0; p1i we have stored twoqubits. Let us say we want to apply the H gate on p1 and then the CNOT gate on

CHAPTER 8. EXTENSION OF THE LANGUAGE 93
First let us de�ne the type of the new term
onstants:� 7! !>Un 7! !(
ni=1 qbit(
ni=1 qbit)If A1 and A2 are not exponential,!�;�1 BM1 : (n+m)(A1) !�;�2 BM2 : (n+ l)(A2)!�;�1;�2 B hM1;M2i : (n)((m)(A1)
 (l)(A2)) (
:I)!�;�1BM :(n)(A1
 A2) !�;�2; x1:(n)(A1); x2:(n)(A2)BN :A!�;�1;�2 B let hx1; x2i =M in N :A (
:E)Table 16: Extended typing rulesboth of them. The CNOT gate is:0BBBB� 1 0 0 00 1 0 00 0 0 10 0 1 0

1CCCCAUsing proje
tions �1 and �2, we would have to write this as:CNOT hH(�1M); �2Miand that is not a valid program sin
e we are dupli
atingM . If we want to stay linear,we have either to forget p1 in doing �2 or to forget p2 in doing �1. So we
annot use
artesian produ
ts to model all the programs we need.With tensor produ
t, the linearity is kept: we
an retrieve information in both Aand B of a produ
t A
B in a linear manner usinglet hx; yi=M in N;as we do in Chapter 3.

CHAPTER 8. EXTENSION OF THE LANGUAGE 94
If V1; V2 are values,[Q; let hx1; x2i = hV1; V2i in N ℄�!1 [Q;N [V1=x1; V2=x2℄℄One redu
es a tuple from left to right:[Q;M1℄�!p [Q0;M 01℄[Q; hM1;M2i℄�!p [Q0; hM 01;M2i℄[Q;M2℄�!p [Q0;M 02℄[Q; hV1;M2i℄�!p [Q0; hV1;M 02i℄Table 17: Extended
all-by-value redu
tionThe above problem has the following solution:let hx; yi =M in (CNOT h(Hx); yisin
e linearity of the produ
t's elements is preserved.Remark. We have obtained the stru
ture for a monoidal
ategory. Indeed we
ande�ne linear fun
tions: � : A
 B(B
 A� : (A
B)
 C(A
 (B
 C)� : A
>(A� : A(A
>as follows: � = �p:(let hx; yi = p in hy; xi)� = �p:(let hx; yi = p inlet hz; ti = x inhz; ht; yii)� = �p:(let hx; yi = p in x)

CHAPTER 8. EXTENSION OF THE LANGUAGE 95� = �x:hx; �iAnd moreover, given f : A(Bg : C(Done
an de�ne f
 g : A
 C(B
Dlike this: f
 g = �p:(let hx; yi = p inhfx; gyi)8.3 Compatibility with the previous resultsLemma 8.3.1 All the previous lemmas still hold in the extended language.Proof. the lemmas we need to prove are 7.1.1, 7.1.2, 7.1.4, 7.1.5, 7.1.6 and 7.1.7.Lemmas 7.1.1 and 7.1.2 are
ompletely similar to the ones in the ba
kground
hapter.Proof of Lemma 7.1.4. We want to show that if �BN : A is valid and if �<: �and A<:B, then �BN : B is also validWe do it by indu
tion on the stru
ture of N . We have to
he
k for the new
ases.If N = hM1;M2i, then �B hM1;M2i:(n)(A1
 A2)
omes from!�1;�2 BM1 : (n)(A1) !�1;�3 BMk : (n)(A2)!�1;�2;�3 B hM1;M2i : (n)(A1
 A2)
:ISin
e � <: �, � = (!�1;�2;�3) with !�1<:!�1, �2 <: �2 and �3 <: �3. There isa bang on !�1 sin
e !�1<:!�1. Sin
e A <: B, B = hB1; B2i with A1 <: B1 andA2 <:B2. Hen
e the indu
tion hypothesis
an be applied, and!�1;�2 BM1 : (n)(B1) and !�1;�3 BM2 : (n)(B2)are valid. Applying (
:I), we obtain the result.

CHAPTER 8. EXTENSION OF THE LANGUAGE 96If N = let hx1; x2i=M in P , then the typing judgement
omes from!�1;�2BM :(n)(A1
 A2) !�1;�3; x1:(n)(A1); x2:(n)(A2)BN :A!�1;�2;�3 B let hx1; x2i =M in P :A
:ESin
e �<: �, � = (!�1;�2;�3) with !�1<:!�1, �2 <: �2 and �3 <: �3. There is abang on !�1 sin
e !�1<:!�1. Applying indu
tion hypothesis,!�1;�2BM :(n)(A1
 A2) and !�1;�3; x1:(n)(A1); x2:(n)(A2)BN :Bare valid. Applying (
:E) gives the resultIf M = �, the proof is done similarly to the axioms already done.Proof of Lemma 7.1.5. We want to prove that if V is a value su
h that �BV :!Ais valid then for all x in FV (V) there exists U in qType su
h that �f (x) =!U .The proof was started by stru
tural indu
tion on V .If V = >, the term is
losed. So by va
uity the result is true.If V = hV1; V2i with V1 and V2 values, the typing tree starts with!�;�1 B V1 : (n + 1)(A1) !�;�2 B V2 : (n + 1)(A2)!�;�1;�2 B hV1; V2i : (n+ 1)(A1
 A2)
:IBy indu
tion hypothesis,FV (V1) \ j�1j = FV (V2) \ j�2j = ;:Sin
e FV (hV1; V2i) = FV (V2)[FV (V1), FV (hV1; V2i) = ;. And so the result isalso true in that
ase.Proof of Lemma 7.1.6. We want to prove that for A and B elements of qTypeand V a value, if !�;�1BV : A and !�;�2; x : ABM : B are valid, then �1;�2; !�BM [V=x℄ : B is valid.The proof was done by indu
tion on the typing tree of !�;�2; x : ABM : B. Wehave 3
ases to add:

CHAPTER 8. EXTENSION OF THE LANGUAGE 97(
:I) is done as in the (app)
ase.(
:E) is like
ombination of an appli
ation and an abstra
tion rule.(�) is done as in the
onstant
ase.Proof of Corollary 7.1.7. We want to prove that if �1; !�; x : A BM : B and�2; !�B V : (�)A then �1;�2; !�BM [V=x℄ : BThis is still a
orollary from Lemma 7.1.6 and Lemma 7.1.4.�Theorem 8.3.2 Subje
t redu
tion still holds.Proof.We have to
he
k that the new stru
tures added have rules that are
ompatiblewith subje
t redu
tion.� The rules for the pairing are just an extension of the appli
ation rules, so usinga similar method, it is working.�Theorem 8.3.3 The progress theorem still hold.Proof. By inspe
tion of the new rules. �8.4 ExamplesExample: implementing the Deuts
h algorithm. The formalism of higher-order fun
tional programming language is adequate for writing the Deuts
h's algo-rithm. Indeed it
an be done in that way:let Deuts
h Uf =let tens f g hx; yi = hfx; gyiin let hx; yi =(tens H (�x:x))(Uf hH(new 0); H(new 1)i)in meas x;

CHAPTER 8. EXTENSION OF THE LANGUAGE 98in ML notations. Note that Uf is a variable that stands for a fun
tion from a two-qubit state to a two-qubit state. And indeed the fun
tion Deuts
h is a higher-orderfun
tion: BDeuts
h:!((qbit
 qbit(qbit
 qbit)(bit)is a well-typed typing judgment. Note that Deuts
h is dupli
able, and that Uf doesnot need to be dupli
able, sin
e it is used only on
e.Example: implementing the teleportation pro
edure. We
an embed ea
hquantum
ir
uit part of the pro
edure in a fun
tion. There is a fun
tion EPR :!(>((qbit
 qbit)) that
reates an entangled state, as in the step (1):EPR = �x:CNOT hH(new 0); new 0i:There is a fun
tion BellMeasure : !(qbit((qbit(bit
 bit)) that takes two qubits,rotates and measures them, as in steps (2) and (3):BellMeasure = �q2:�q1:(let hx; yi = CNOT hq1; q2i in hmeas(Hx);meas yiWe also
an de�ne a fun
tion U : !(qbit((bit
 bit(qbit)) that takes a qubit q andtwo bits x; y and returns Uxyq, as in step (4):U = �q:�hx; yi:if x then (if y then U11q else U10q)else (if y then U01q else U00q);where Uxy are de�ned as on page 16 when the measured qubits were x and y.The teleportation pro
edure
an be seen as the
reation of two non-dupli
ablefun
tions f and g f : qbit(bit
 bit ;g : bit
 bit(qbit ;su
h that f Æ g(x) = x for an arbitrary qubit x. We
an
onstru
t su
h a pair offun
tions by the following
ode:let hx; yi=EPR �in let f = BellMeasure xin let g = U y:in hf; gi:

CHAPTER 8. EXTENSION OF THE LANGUAGE 99Note that, sin
e f and g depend on the state of the qubits x and y, respe
tively, thesefun
tions
annot be dupli
ated, whi
h is re
e
ted in the fa
t that the types of f andg do not
ontain a top-level \!".

Chapter 9Type inferen
e algorithmUp to now we have de�ned a quantum programming language, mixing quantum and
lassi
al data types, together with a type system to
ertify the good behavior ofprograms during redu
tion. However, a big problem is not solved: how
an we saywhether or not a program is well-typed ? An algorithm that
an solve su
h a problemis
alled a type inferen
e algorithm.9.1 A �rst exampleOur goal is to �nd an inferen
e algorithm. One
an try to base it on the one fromthe simply-typed lambda-
al
ulus from Chapter 3. Re
all that one key-point in thisalgorithm was, given a well-typedM , the existen
e of a most general typing judgment�BM : A su
h that ea
h possible typing judgment would be an instan
e of �BM : AHowever, in MAILL, su
h a type does not exists. Indeed,
onsider the followingexample: let M = �xy:xybe a lambda term. Note that M is a well-typed
losed term. Here are some validtyping judgments: BM : (U(Y)((U(V);BM :!(U(V)(!(U(V);BM :!(U(V)((U(V):100

CHAPTER 9. TYPE INFERENCE ALGORITHM 101The most general type W su
h that �W = !(U (V)(!(U (V) and �W =(U(V)((U(V) for some substitutions � and � is X(Y . ButBM : X(Yis not valid: the notion of substitution is therefore not suÆ
ient to des
ribe thevalidity of a typing judgment.On linear types, there is another natural ordering relation: the subtyping relation.For example, (U (V)(!(U (V) is the greatest element smaller than all typesabove, but BM : (U(V)(!(U(V)is not a valid typing judgment. So there is no smallest type for this typing judgmentusing the subtyping relation.However, one
an
onsider the exponential symbols as de
orations on linear types,as suggested by V. Danos, J.-B. Joinet and H. S
helling [7℄. One
an note that allpossible types of M are of the form (X(Y)((X(Y). If one repla
e(with),this type gives a valid typing judgment IM : (X)Y))(X)Y) in the simply-typedlambda-
al
ulus of Chapter 3. The type in quantum lambda-
al
ulus is therefore ade
oration of a simple-type. We de�ne these notions formally in the next se
tion.This work is similar to [7℄.9.2 Synta
ti
 SkeletonWe de�ne the
lass of type skeletons bySkel A;B ::= �j Xj (A)B)j (A� B)j >;

CHAPTER 9. TYPE INFERENCE ALGORITHM 102where � ranges over the type
onstants and X over the type variables. We de�ne thetyping-skeleton of A in qType to be:y(n)(�) = �y(n)(X) = Xy(n)(A(B) = yA) yBy(n)(A
 B) = yA� yBy(n)(>) = >:It
orresponds to the stru
ture of the type, or to erasing all \!".Lemma 9.2.1 If U <: V , then yU = yV .Proof. By indu
tion on the derivation of U <:V using set (2) of rules from page 72.(var 2) y(n)(X) = X = y(m)(X). Hen
e it is true in that
ase.(�) The only type variables we have are bit and qbit , and they are not
omparableusing the subtyping relation. So if � � �, then � = �. So if (n)(�) <: (m)(�),then y(n)(�) = � = � = y(n)(�).((2) If the derivation starts withA <: A0 B <: B0 (m = 0) _ (n � 1)(n)(A0(B) <: (m)(A(B0);by indu
tion hypothesis, yA = yA0 and yB = yB0. Using the de�nition of theskeleton, y(n)(A0(B) = y(m)(A(B0).(>) By de�nition of skeleton, y(n)(>) = y(m)(>).(
) If the derivation starts with(m = 0) _ (n � 1) A1 <:B1 A2 <:B2(n)(A1
 A2)<: (m)(B1
 B2);then by indu
tion hypothesis,yA1 = yB1 and yA2 = yB2

CHAPTER 9. TYPE INFERENCE ALGORITHM 103Using the de�nition of the skeleton,y(n)(A1
 A2) = y(m)(B1
 B2)� We extend the notion to
ontexts and typing judgment as follows:yfx1:A1; : : : ; xn:Ang = fx1:yA1; : : : ; xn:yAngy(�BM :A) = (y�B� M :yA):If �BM : A is a valid typing judgment in the quantum lambda-
al
ulus, the followingremark shows that y(�BM : A) = (y� B� M : yA) is a valid typing judgment in theskeleton lambda-
al
ulus. The rules of the skeleton lambda-
al
ulus are shown inTable 18. They are equivalent to the rules of simply-typed lambda-
al
ulus fromTable 7 in Chapter 3, modulo appli
ation of the weakening property. The reasonfor this slight reformulation of the rules is so that the skeleton
al
ulus is the exa
timage of the quantum lambda-
al
ulus under the skeleton operations, as shown inthe following remark:Remark 9.2.2 If a typing judgment T is valid, then its skeleton admits a proof tree
onstru
ted with the rules in Table 18. Su
h a proof tree is the exa
t image of thetyping tree of T by y. �Lemma 9.2.31. The weakening property is veri�ed: if �B� M : A is true, then �;�B� M : A isalso true.2. If �; x:B B� M : A with x 62 FV (M) is true, then �B� M : A is also true.Proof. The proof is done by indu
tion on the typing derivation of �B� M : A, as itwas for the quantum-typed
ase. �Lemma 9.2.4 Given a term M of the quantum lambda-
al
ulus, � B� M :A if andonly if �IM :A

CHAPTER 9. TYPE INFERENCE ALGORITHM 104
�B�
 : yA
�; x : AB� x : A�; x : AB� M : B�B� �x:M : A)B�1;�B� M : A)B �2;�B� N : A�1;�2;�B� MN : B�1;�B� P : bit �2;�B� M : A �2;�B� N : A�1;�2;�B� if(P ;M ;N) : A�;�1 B� M1 : A1 �;�2 B� M2 : A2�;�1;�2 B� hM1;M2i : A1 � A2�;�1 B� M : A1 � A2 �;�2; x1 : A1; x2 : A2 B� N : A�;�1;�2 B� let hx1; x2i =M in N : ATable 18: Indu
ed typing rules for skeletonProof. First note that the set of quantum lambda-terms is the set of the simply-typed lambda-terms.(Ea
h rule of the simply-typed lambda-
al
ulus is an instan
e of the
orrespondingrule in skeleton lambda-
al
ulus.) Using the weakening property of Lemma 3.2.1, one
an prove by indu
tion on thetyping derivation of �B� M :A that �IM :A is true.�Remark 9.2.5 Given a well-typed quantum term M , there exists a most generaltyping judgment for x1 : X1 : : : xn : Xn B� M : Y , j�j = fx1 : : : xng.

CHAPTER 9. TYPE INFERENCE ALGORITHM 105Proof. Given the previous lemma, if �IM : A is a most general typing judgmentfor x1 : X1 : : : xn : Xn IM : Y , a most general typing judgment for x1 : X1 : : : xn :Xn B� M : Y is �B� M : A. �De�nition 9.2.6 Given A 2 Skel , one de�ne a quantum type with the followingindu
tive de�nition: |X = X|� = �|(A)B) = |A(|B|(A� B) = |A
 |BLemma 9.2.7 A = y|AProof. by indu
tion on the derivation of |A. �We now turn to the question of how a skeleton type
an be \de
orated" withexponentials to yield a quantum type. These de
orations are going to be the heart ofthe quantum type inferen
e algorithm.De�nition 9.2.8 Given U 2 qType and A 2 Skel , we de�ne the de
oration A #U 2 qType of A along U by1) A# (n)(U) = (n)(A# U) where U is not banged;2) (A)B)# (U(V) = (A# U(B # V);3) (A� B)# (U
 V) = (A# U
B # V);and in all other
ases;4) A# U = |A:Lemma 9.2.9 If A 2 Skel and U; V 2 qType, then the following are true:a) A# (n)(U) = (n)(A# U);b) (A)B)# (U(V) = A# U(B # V ;
) (A� B)# (U
 V) = A# U
B # V ;d) If yU = A then A# U = U;e) y(A# U) = A;f) If U <: V then A# U <: A# V:

CHAPTER 9. TYPE INFERENCE ALGORITHM 106Proof.a) U = (m)(V) with V not banged. Then (n)(U) = (m+ n)(V).A# (n)(U)= A# (n)(m)(V)= A# (n+m)(V)= (m+ n)(A# V)= (n)((m)(A# V))= (n)(A# (m)(V))= (n)(A# U):b) and
) are the de�nition.d) By indu
tion on the derivation of A# U :1) The formula isA# (n)(U), U not exponential. By de�nition, A# (n)(U) =(n)(A# U). By indu
tion hypothesis, A# U = U . Then A# (n)(U) =(n)(U).2) The formula is (A) B) # U (V with y(U(V) = (A) B). From thede�nition of the skeleton, yU = A and yV = B. So by indu
tion hypothesisA# U = U and B # V = V . So (A)B)# (U(V) = (A# U(B #V) = (U(V)3) This
ase is similar, repla
ing(with
 and) with �.4) If A = yU then this
ase is rea
h only if A = U = �;> or X a type variable.Then |A = U , and A# U = U .e) By indu
tion on the derivation of A# U :1) The formula is A # (n)(U), U not exponential. Sin
e A # (n)(U) =(n)(A # U), y(A# (n)(U)) = y(A# U). By indu
tion hypothesis, thisis equal to A.

CHAPTER 9. TYPE INFERENCE ALGORITHM 1072) The formula is (A)B)# (U(V). By indu
tion hypothesis,y(A# U) = A and y(B # V) = B:So y(A# U(B # V) = y(A# U)) y(B # V) = A)B.3) This
ase is similar, repla
ing(with
 and) with �.4) A# U = |A. By Lemma 9.2.7, y(A# U) = A.f) By indu
tion on the derivation of U <: V .(ax) In this
ase, sin
e �
an only be bit or qbit , the rule is U <: U . ThenA# U = A# V . By re
exivity, A# U <: A# V .(var) The rule is X <:X. By re
exivity, A# X <: A# X.(>) is similar to the previous
ase.(D) The rule is U <: V:!U <: VBy indu
tion hypothesis, A # U <: A # V . Applying (D), !(A # U) <:A# V . From (a), !(A# U) = (A#!U). Hen
e A#!U <: A# V .(!) The rule is !U <: V:!U<:!VBy indu
tion hypothesis, A#!U<:A# V . From (a), !(A# U)<:A# V .Applying (!), !(A# U)<:!(A# V). And from (a), A#!U <: A#!V .(() The rule is V <: U U 0 <: V 0U(U 0 <: V (V 0By indu
tion hypothesis, A # V <: A # U and A # U 0 <: A # V 0.Applying ((), A # U (A # U 0 <: A # V (A # V 0. From (b),A# (U(U 0)<: A# (V (V 0)

CHAPTER 9. TYPE INFERENCE ALGORITHM 108(
) The rule is U <: V U 0 <: V 0U
 U 0 <: V
 V 0Using the same method as for the (()
ase, and from (
), one have A#(U
 U 0)<: A# (V
 V 0)� The following lemma is the key to the quantum type inferen
e algorithm:Lemma 9.2.10 If M is well-typed in the quantum lambda-
al
ulus with typing judg-ment � B M : U , then for any valid typing judgment � B� M : A in simply-typedlambda-
al
ulus with j�j = j�j, the typing judgment �# �BM : A# U is valid inthe quantum lambda-
al
ulus and admits a proof whi
h has for skeleton the proof of�B� M : A.Proof. By stru
tural indu
tion on the typing-tree of �BM : U .(
) M =
 and the typing judgment is �B
 : U , A
<:U . Any valid typing judgmentin simply typed �-
al
ulus is of the form �B�
 : yA
. Sin
e A
 <: U , yA
 = yU .Then from Lemma 9.2.9.d one
an dedu
e that yA
 # U = U . And so theLemma is true in that
ase: �# �B
 : U(x) M = x and the typing judgment is �; x : U B x : V , with U <: V . A typingjudgment in simply typed lambda-
al
ulus is of the form �; x : AB� x : A. FromLemma 9.2.9.f, A# U <: A# V . And then �# �; x : A# U B x : A# V isvalid in qType. And so the Lemma is true in this
ase.(�1) M = �x:N and the last rule of the typing derivation is�; x : U BM : V:�B �x:M : U(VThe typing tree in simply typed lambda-
al
ulus starts with�; x : AB� M : B:�B� �x:M : A)B

CHAPTER 9. TYPE INFERENCE ALGORITHM 109The indu
tion hypothesis applies for �; x : U BM : V and �; x : A B� M : B.We have: �# �; x : A# U BM : B # V:One
an apply (�1), and from Lemma 9.2.9.b, we obtain�# �B �x:M : (A)B)# (U(V):(�2) Given �2; !�1; x:U BM :V�2; !�1 B �x:M :(n+ 1)(U(V)with FV (�x:N) 2 j�1j and �; x:AB� M :B�B� �x:M :A)B;sin
e j�j = j�2; !�1j, one
an split � in (�1;�2), with j�ij = j�ij. By indu
tionhypothesis �2 # �2;�1 #!�1; x:A# U BM :B # Vis valid. From Lemma 9.2.9.a, � #!�1 is of the form !�01. The free variable of�x:N are still in j�01j, and then (�2) apply in pla
e of (�1) in the previous
ase:we obtain �# �B �x:M : (A)B)# (n+ 1)(U(V):(app) M = NP and the typing tree starts with!�1;�2 BN : U(V !�1;�3 B P : U!�1;�2;�3 BNP : VIn simply typed lambda
al
ulus the typing tree is:�1;�2 BN : A)B �1;�3 B P : A�1;�2;�3 BNP : BWe have from the hypothesis that j�1;�2;�3j = j!�1;�2;�3j. From the weak-ening property of Lemma 9.2.3.1 we
an �nd a proof tree starting with:�1;�2;�3 BN : A)B �1;�2;�3 B P : A�1;�2;�3 BNP : B

CHAPTER 9. TYPE INFERENCE ALGORITHM 110The variable in �3 are not free in N , and the variable in �2 are not free in P .Using the strength property of Lemma 9.2.3.2, one
an remove these variablesto obtain �01;�02 BN : A)B �01;�03 B P : A�01;�02;�03 BNP : B ;with j�0ij = j�ij. The indu
tion hypothesis allows us to write that�01 #!�1;�02 # �2 BN : (A)B)# (U(V)and �01 #!�1;�03 # �3 B P : A# Uare valid. Sin
e (A) B) # (U (V) = A# U (B # V and �01 #!�1 is ofthe form !�01 using Lemma 9.2.9.a, we
an apply the appli
ation rule and get�01 #!�1;�02 # �2;�03 # �3 BNP : B # Vand see that the lemma is veri�ed in that
ase.(if) M = if (P ;N ;Q) and the typing tree starts with!�1;�2 B P : bit !�1;�3 BN :U !�1;�3 BQ:U!�1;�2;�3 B if (P ;N ;Q) : UIn simply typed lambda
al
ulus the typing tree is:�1;�2 B P : bit �1;�3 BN :A �1;�3 BQ:A�1;�2;�3 B if (P ;N ;Q) : AUsing the same tri
k as in the (app), one
an rearrange the
ontexts to obtain�01;�02 B P : bit �01;�03 BN :A �01;�03 BQ:A�01;�02;�3 B if (P ;N ;Q) : Awith j�0ij = j�ij. The indu
tion hypothesis allows us to write that�01 #!�1;�02 # �2 B P : bit ;�01 #!�1;�03 # �3 BN :A# U;

CHAPTER 9. TYPE INFERENCE ALGORITHM 111and �01 #!�1;�03 # �3 BQ : A# Uare valid. Sin
e �01 #!�1 is of the form !�01 using Lemma 9.2.9.a, we
an applythe (if) rule and get�01 #!�1;�02 # �2;�03 # �3 B if (P ;N ;Q) : A# Uand see that the lemma is veri�ed in that
ase.(
) M = hN;P i and the typing tree starts with!�1;�2 BN :(m + n)(U) !�1;�3 B P :(n+ l)(V)!�1;�2;�3 B hN;P i : (n)((m)U)
 (l)(V))In simply typed lambda
al
ulus the typing tree is:�1;�2 BN :A �1;�3 B P :B�1;�2;�3 B hN;P i : A� BUsing the same tri
k as in the (app), one
an rearrange the
ontexts to obtain�01;�02 BN :A �01;�03 B P :B�01;�02;�3 B hN;P i : A� Bwith j�0ij = j�ij. The indu
tion hypothesis allows us to write that�01 #!�1;�02 # �2 BN :A# (n+m)(U);and �01 #!�1;�03 # �3 B P : B # (n+ l)(V)are valid. Sin
e �01 #!�1 is of the form !�01 using Lemma 9.2.9.a, we
an applythe (
) rule and get�01 #!�1;�02 # �2;�03 # �3 B hN;P i : (A� B)# (n)(U
 V)and see that the lemma is veri�ed in that
ase.� The proof for let is based on the same model as the ones above. The proof for(�) is the same as the one for the
onstant terms.�

CHAPTER 9. TYPE INFERENCE ALGORITHM 1129.3 TemplateWe want to be able to say whether a given term is typable. Note that if M is not ty-pable in simply typed lambda
al
ulus theM is not quantum typable by Remark 9.2.On the other hand, if M admits an intuitionisti
 typing judgment � B� M : A (withtyping derivation �, say), thenM is quantum typable if and only ifM has a quantumderivation whose skeleton is �. Thus we
an perform type inferen
e in the quantumlambda-
al
ulus in two steps:1. Find an intuitionisti
 typing derivation �, if any,2. and �nd a de
oration of � whi
h is a valid quantum typing derivation, if possible.Step (1) is already de
idable, using Remark 9.2. In step (2), note that the set ofde
orations of � is in general in�nite, due to the presen
e of multiple exponentials ofthe form (n)(N) for arbitrary n. However, as we show in the next se
tion, it suÆ
esto
onsider the
ases n = 0 and n = 1 making the sear
h spa
e for step (2) �nite.We de�ne formally the template of a term M and a term variables set E to bethe set T(E;M) = � ��BM : A valid typing tree with j�j = E �
9.4 A sub
lass of qTypeWe de�ne a SqType to be a quantum type without repeated exponentials. Formally:SType C;D ::= !Aj AAqType A ::= �j Xj (C(D)j (C
D)j >

CHAPTER 9. TYPE INFERENCE ALGORITHM 113There is a
anoni
al proje
tion:# : qType 7�! SqTypede�ned by the following, using the set of rules (2):#(A(B) = #(A)(#(B)#((n+ 1)(A(B)) = !(#(A)(#(B))#(�) = �#((n + 1)(�)) = !�#(A
 B) = #(A)
 #(B)#((n+ 1)(A
 B)) = !(#(A)
 #(B)))#(>) = >#((n+ 1)(>)) = !>We extend this fun
tion to typing judgments, proofs and type substitutions in a
anoni
al way. We de�ne �n to be 0 if n = 0, 1 else.Lemma 9.4.1 For all A in qType, #A + A.Proof. By stru
tural indu
tion on A, where �n = 0 if n = 0, 1 else:#((n)(X)) = (�n)(X) + (n)(X);#((n)(�)) = (�n)(�) + (n)(�);#((n)(>)) = (�n)(>) + (n)(>);from the set (2) of subtyping rules, and by indu
tion hypothesis: #((n)(C(D)) +(n)(C(D) and #((n)(C
D)) + (n)(C
D), using the de�nition of subtyping. �Lemma 9.4.2 Any given skeleton is the image by y of only a �nite number of ele-ments of SqType.Proof. By stru
tural indu
tion on a skeleton A.A is X, � or >. The only two possible qType of su
h a skeleton are A and !A. Thenthere is a �nite number of them.

CHAPTER 9. TYPE INFERENCE ALGORITHM 114A = B)C a type U in SqType su
h that yU = A
an only be of the form (�)(V(W),with V being one of the �nitely many SqType of skeleton B and W being oneof the �nitely many SqType of skeleton C, and � being 0 or 1. So there are only�nitely many U satisfying this
ondition.A = B
 C is similar to the)
ase, repla
ing(with
.�Lemma 9.4.3 Given any valid typing judgment �BM : U in qType with typing tree!, the proje
tion #(!) is a valid typing tree for the typing judgment #�BM : #U . Soa term M is valid in qType if and only if there is a typing tree for it in the
o-domainof #.Proof. Follows dire
tly from Lemma 9.4.1 and Lemma 7.1.4. �Theorem 9.4.4 There is a deterministi
 algorithm to
he
k if a given term M isvalid:� Find a typing derivation for M . For example the one given by the type inferen
ealgorithm of Chapter 3.� There is only a �nite number of possible de
oration, and M is valid if and onlyif one one �nd a valid proof tree for one of those de
orations.Now we have a deterministi
 algorithm to de
ide if a term M is well-typed ornot. However this algorithm is exponential in the size of the typing-tree of the mostgeneral uni�er.9.5 A polynomial-time de
ision pro
edureThe naive appli
ation of the pro
edure from Theorem 9.4.4 yields a sear
h spa
e whi
his �nite, but exponential in the size of the intuitionisti
 typing derivation. However,it is easy to organize the sear
h in a more eÆ
ient way.

CHAPTER 9. TYPE INFERENCE ALGORITHM 115Let xSqType be an extension of qType:xSqType V;W ::= (�)(U);xAqType U ::= X j � j V (W j V
 W;when � ranges over a
ountable set of variables,
alled
ags.Let � be a map from Skel to xSqType, de�ned re
ursively, where � is a fresh
agat ea
h step: �(X) = (�)(X)�(�) = (�)(�)�(A)B) = (�)(�(A)(�(B))�(A� B) = (�)(�(A)
 �(B))One
an
anoni
ally extend � to skeleton judgments and skeleton typing-proofs.Let A be an xSqType, and let F be the set of
ags o

urring in A. Given a fun
tion� from xSqType to SqType, we
an de�ne an SqType �(A) by:If A is in xAqType�((�)(A)) = (��)AIf V;W are in xSqType�(X) = X�(�) = ��(V (W) = �(V)(�(W)�(V
W) = �(V)
 �(W)One
an
anoni
ally extend � to the domain of �.Given a skeleton typing tree, an inferen
e algorithm needs only to pla
e
onstraintson � in order to obtain a valid typing tree in SqType. Given a valid skeleton typingjudgment (� B� M : A) with its typing tree, one
onstru
t a set of
onstraints for �in the following manner:(x) The typing tree of (�B� M : A) isx1 : A1; : : : xn : An B� xi : Ai:� outputs x1 : U1; : : : xn : Un B� xi : V

CHAPTER 9. TYPE INFERENCE ALGORITHM 116The
onstraint for � is (it is fully explained in the proof of Lemma 9.5.1):�(Ui)<: �(V)(
) The typing tree of (�B� M : A) isx1 : A1; : : : xn : An B�
 : yA
:� outputs x1 : U1; : : : xn : Un B�
 : V:The
onstraint for � is (it is fully explained in the proof of Lemma 9.5.1):A
 <: �(V)(�) The typing tree of (�B� M :A) is !�; x:C B� N :D�B� �x:N :C)D:One must make mat
hing the output of � with the form.... �(!)�0; x:U B� N :V�0 B� �x:N :(�)(U(V):If �0 = fy1:(�1)(U1) : : : yn:(�n)(Un)g, the
onstraints for � are the ones of theprevious
all to � together with:8yi �(�) = 1) �(�i) = 1(app) The typing tree of (�B� M :A) is.... !1�1;�2 B� N :A)B !2�1;�3 B� P :A�1;�2;�3 B� NP :B :

CHAPTER 9. TYPE INFERENCE ALGORITHM 117One must make mat
hing the output of � with the form.... �(!1)�01;�02 B� N :(�)(U(V) �(!2)�01;�03 B� P :U�01;�02;�03 B� NP :V :If �01 = fy1:(�1)(U1) : : : yn:(�n)(Un)g, the
onstraints for � are the ones of thetwo previous
alls to � together with�(�) = 08yi �(�i) = 1(if) The typing tree of (�B� M :A) is.... !1�3;�1B�P :bit !2�2;�1B�Q:A !3�2;�1B�N :A�1;�2;�3 B� if(P ;Q;N) : A :One must make mat
hing the output of � with the form.... �(!1)�03;�01B�P :(�)(bit) �(!2)�02;�01B�Q:U �(!3�02;�01B�N :U�01;�02;�03 B� if(P ;Q;N) : U :If �01 = fy1:(�1)(U1) : : : yn:(�n)(Un)g, the
onstraints for � are the ones of thethree previous
alls to � together with�(�) = 08yi �(�i) = 1(�:I) The typing tree of (�B� M :A) is.... !1�;�1 B� M1 : A1 !2�;�2 B� M2 : A2�;�1;�2 B� hM1;M2i : A1 � A2

CHAPTER 9. TYPE INFERENCE ALGORITHM 118One must make mat
hing the output of � with the form.... �(!1)�0;�01 B� M1 : (�01)(A1) �(!2)�0;�02 B� M2 : (�02)(A2)�0;�01;�02 B� hM1;M2i : (�)((�1)(A1)� (�2)(A2))If �0 = fy1:(�1)(U1) : : : yn:(�n)(Un)g, the
onstraints for � are the ones of thetwo previous
alls to � together with8yi �(�i) = 1;�(�) = 1) �(�01) = 1 and �(�) = 1) �(�02) = 1;�(�1) = 1) �(�01) = 1 and �(�2) = 1) �(�02) = 1:(�:E) The typing tree of (�B� M :A) is.... !1�;�1 B� M : A1 � A2 !2�;�2; x1 : A1; x2 : A2 B� N : A�;�1;�2 B� let hx1; x2i=M in N :AOne must make mat
hing the output of � with the form.... �(!1)�0;�01 B� M : (�0)(A1 � A2) �(!2)�0;�02; x1 : (�0)(A1); x2 : (�0)(A2)B� N : (�)(A)�0;�01;�02 B� let hx1; x2i=M in N :(�)(A)If �0 = fy1:(�1)(U1) : : : yn:(�n)(Un)g, the
onstraints for � are the ones of thetwo previous
alls to � together with8yi �(�i) = 1;Lemma 9.5.1 This algorithm is well-de�ned and given �B� M : A a skeleton typingjudgment, the set of � that satisfy the
onstraints is in 1 to 1
orresponden
e with theset of quantum typing derivations, using SqType, whose images by y are (�B� M : A).Moreover, the set of
onstraints for � are all of the form�(�) = 1;�(�) = 0 or�(�) = 1) �(�0) = 1

CHAPTER 9. TYPE INFERENCE ALGORITHM 119Proof. By indu
tion on the typing-tree, any typing judgment (� B M :U) usingSqType whose image by y is (� B� M : A) will give a map � su
h that ��(� B� M :A) = (� BM :U). On the
onverse, all the
onstraints pla
ed for � are suÆ
ient tomake the image valid, by inspe
tion of the rules.Finally, the only
onstraints that are not of the
laimed form are the ones thatare for the variables and for the
onstants: �(U) <: �(V) and A
 <: �(V) But su
h a
onstraint
an be re-written, using this re
ursive pro
edure whi
h is a translation ofthe set (2) of subtyping rules on page 72:(�) Sin
e � is only bit and qbit , and sin
e there is no subtyping relation betweenthem, the rule is �((�)(�)) <: �((�0)(�)) if and only if �(�0) = 1) �(�) = 1(X) �((�)(X)) <: �((�0)(X)) if and only if �(�0) = 1) �(�) = 1(() �((�)(U(V))<: �((�0)(U 0(V 0)) if and only if �(V)<: �(V 0) and �(U 0)<: �(U)and �(�0) = 1) �(�) = 1(
) �((�)(U
 V)) <: �((�0)(U 0
 V 0)) if and only if �(V) <: �(V 0) and �(U) <: �(U 0)and �(�0) = 1) �(�) = 1and this gives a set of
onstraints that are of the right form. The
onstraint A
<:�(V)are translated with a similar algorithm. �Theorem 9.5.2 The algorithm gives a de
idability
riterion for the quantum typa-bility of M , and given a valid skeleton typing judgment � B� M :A, the algorithm ispolynomial in the size of skeleton typing tree of �B� M :A.Proof. From Lemma 9.2.10 and Lemma 9.5.1, ifM is intuitionisti
-typable, then itis quantum typable if and only if the set of
onstraints for � is
onsistent. This
anbe done in a polynomial manner on the number of elements in the set. Indeed, analgorithm based on tableau-system is the following:� Set all the values to 1 and 0 a

ording to the
lauses �(�) = : : :. If there is a
ontradi
tion there, then fail.

CHAPTER 9. TYPE INFERENCE ALGORITHM 120� For ea
h formula �(�) = 1) �(�0) = 1, if the value of � is 1, remove �(�) =1) �(�0) = 1 and set �0 to 1 if it is not set to 0.� If it was, then fails.� Continue until nothing
an be done anymore, and then output su

ess.Sin
e the number of
onstraints is polynomial in the size of the typing derivation,and sin
e the algorithm given in this proof is polynomial in the size of the numberof
onstraints, the quantum typability of a given valid M in simply-typed lambda
al
ulus
an be de
ided in polynomial time on the size of the intuitionisti
 typingderivation. �

Chapter 10Con
lusion and further workIn this thesis, we have de�ned a higher-order quantum programming language basedon a linear typed lambda
al
ulus. Compared to the quantum lambda
al
ulus of vanTonder [26, 27℄, our language is
hara
terized by the fa
t that it
ombines
lassi
al aswell as quantum features; thus, we have
lassi
al data types as well as quantum ones.We also provide both unitary operations and measurements as primitive featuresof our language. As the language shows, linearity
onstraints do not just exist atbase types, but also at higher types, due to the fa
t that higher-order fun
tion arerepresented as
losures whi
h may in turns
ontain embedded quantum data. We haveshown that aÆne intuitionisti
 linear logi
 provides pre
isely the right type systemto deal with this situation.There are many open problems for further work. An interesting question iswhether the syntax of this language
an be extended to in
lude re
ursion. In ad-dition to the multipli
ative types, one
an wonder whether it is possible to extend thetype system to additive types, as in linear logi
. Another question is to study more
arefully the relation with aÆne intuitionisti
 linear logi
, and
ompare with a type-system for a
all-by-name redu
tion strategy. A very important open problem is to�nd a satisfa
tory denotational semanti
s for a higher order quantum programminglanguage. One approa
h for �nding su
h a semanti
s is to extend the framework ofSelinger [21℄ and to identify an appropriate higher-order version of the notion of asuperoperator. 121

Bibliography[1℄ S. Abramsky. Computational interpretations of linear logi
. Theoreti
al Com-puter S
ien
e, 111(1-2):3{57, 1993.[2℄ H. P. Barendregt. The Lambda-Cal
ulus, its Syntax and Semanti
s, volume 103of Studies in Logi
 and the Foundation of Mathemati
s. North Holland, se
ondedition, 1984.[3℄ P. Benio�. The
omputer as a physi
al system: A mi
ros
opi
 quantum me-
hani
al Hamiltonian model of
omputers as represented by Turing ma
hines.Journal of Statisti
al Physi
s, 22:563{591, 1980.[4℄ N. Benton, G. Bierman, V. de Paiva, and M. Hyland. A term
al
ulus forintuitionisti
 linear logi
. In M. Bezem and J. F. Groote, editors, Pro
eedings ofthe International Conferen
e on Typed Lambda Cal
uli and Appli
ations, volume664 of Le
ture Notes In Computer S
ien
e, pages 75{90. Springer Verlag, 1993.[5℄ S. Bettelli, T. Calar
o, and L. Sera�ni. Toward an ar
hite
ture for quantumprogramming. The European Physi
al Journal D, 25(2):181{200, August 2003.[6℄ A. Chur
h. An unsolvable problem of elementary number theory. Ameri
anJournal of Mathemati
s, 58(2):345{363, 1936.[7℄ V. Danos, J.-B. Joinet, and H. S
hellinx. On the linear de
oration of intuitionisti
derivations. Ar
hive for Mathemati
al Logi
, 33:387{412, 1995.
122

BIBLIOGRAPHY 123[8℄ D. Deuts
h. Quantum theory, the Chur
h-Turing prin
iple and the universalquantum
omputer. Pro
eedings of the Royal So
iety of London. Series A, Math-emati
al and Physi
al S
ien
es, 400(1818):97{117, July 1985.[9℄ J.-Y. Girard. Linear logi
. Theoreti
al Computer S
ien
e, 50(1):1{101, 1987.[10℄ J.-Y. Girard. La logique lin�eaire. Pour La S
ien
e, 150:74{85, April 1990.[11℄ J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of CambridgeTra
ts in Theoreti
al Computer S
ien
e. Cambridge University Press, 1990.[12℄ S. Kleene. A theory of positive integers in formal logi
. Ameri
an Journal ofMathemati
s, 57:153{173 and 219{244, 1935.[13℄ E. Knill. Conventions for quantum pseudo
ode. Te
hni
al Report LAUR-96-2724, Los Alamos National Laboratory, 1996.[14℄ P. Naur, J. W. Ba
kus, F. L. Bauer, J. Green, C. Katz, J. M
Carthy, A. J. Perlis,H. Rutishauser, K. Samelson, and B. Vauquois. Report on the algorithmi
 lan-guage ALGOL 60. Communi
ations of the Asso
iation of Computing Ma
hinery,3(5):299{314, May 1960.[15℄ M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Informa-tion. Cambridge University Press, 2002.[16℄ B. C. Pier
e. Types and Programming Languages. The MIT Press, 2002.[17℄ J. Preskill. Le
ture notes for Physi
s 229, quantum
omputation. Available fromhttp://www.theory.
alte
h.edu/people/preskill/ph229/#le
ture, 1999.[18℄ A. P. Propylov. De
idability of linear aÆne logi
. In Pro
eedings, Tenth AnnualIEEE Symposium on Logi
 in Computer S
ien
e, pages 496{504, San Diego,California, June 1995. IEEE, IEEE Computer So
iety Press.[19℄ J. W. Sanders and P. Zuliani. Quantum programming. In R. Ba
khouse andJ. N. Oliveira, editors, Mathemati
s of Program Constru
tion: 5th International

BIBLIOGRAPHY 124Conferen
e, volume 1837 of Le
ture Notes in Computer S
ien
e, pages 80{99,Ponte de Lima, Portugal, July 2000. Springer-Verlag.[20℄ P. Selinger. Le
ture notes on the lambda
al
ulus. Available from the web sitehttp://quasar.mathstat.uottawa.
a/�selinger/papers/, 2001.[21℄ P. Selinger. Towards a quantum programming language. Mathemati
al Stru
turesin Computer S
ien
e, 14(4):527{586, 2004.[22℄ P. W. Shor. Algorithms for quantum
omputation: Dis
rete log and fa
toring. InPro
eedings of the 35th Annual Symposium on Foundations of Computer S
ien
e,pages 124{134. Institute of Ele
tri
al and Ele
troni
 Engineers Computer So
ietyPress, November 1994.[23℄ P. W. Shor. Polynomial-time algorithms for prime fa
torization and dis
retelogarithms on a quantum
omputer. SIAM Journal on Computing, 26(5):1484{1509, 1997. This is an expanded version of [22℄.[24℄ A. Turing and J.-Y. Girard. La ma
hine de Turing, volume 131 of Points S
i-en
es. Editions du Seuil, 1995.[25℄ A. M. Turing. On
omputable numbers, with an appli
ation to the Ents
hei-dungsproblem. Pro
eedings of the London Mathemati
al So
iety, Series 2, 42,1936. Can be found
ommented by J.-Y. Girard in [24℄.[26℄ A. van Tonder. Quantum
omputation,
ategori
al semanti
s and linear logi
.On arXiv: quant-ph/0312174, 2003.[27℄ A. van Tonder. A lambda
al
ulus for quantum
omputation. SIAM Journal ofComputing, 33(5):1109{1135, 2004. Available from arXiv:quant-ph/0307150.[28℄ P. Wadler. A syntax for linear logi
. In S. Brookes, M. Main, A. Melton, M. Mis-love, and D. S
hmidt, editors, 9th International Conferen
e on the Mathemati
alFoundations of Programming Semanti
s, volume 802 of Le
ture Notes in Com-puter S
ien
e, pages 513{529, New Orleans, Louisiana, 1993. Springer Verlag.

