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Abstract

The objective of this thesis is to develop a functional programming language for
quantum computers based on the (QRAM model, following the work of P. Selinger
(2004) on quantum flow-charts. We construct a lambda-calculus without side-effects
to deal with quantum bits. We equip this calculus with a probabilistic call-by-value
operational semantics. Since quantum information cannot be duplicated due to the
no-cloning property, we need a resource-sensitive type system. We develop it based
on affine intuitionistic linear logic. Unlike the quantum lambda-calculus proposed
by Van Tonder (2003, 2004), the resulting lambda-calculus has only one lambda-
abstraction, linear and non-linear abstractions being encoded in the type system.
We also integrate classical and quantum data types within our language. The main
results of this work are the subject-reduction of the language and the construction of

a type inference algorithm.
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Chapter 1

Introduction

13 And God said unto Noah, The end of all flesh is come
before me; for the earth is filled with violence through
them; and, behold, I will destroy them with the earth.

14 Make thee an ark of gopher wood; rooms shalt thou
make in the ark, and shalt pitch it within and without with
pitch. 15 And this is the fashion which thou shalt make it
of: The length of the ark shall be three hundred cubits, the
breadth of it fifty cubits, and the height of it thirty cubits.
[6 Gen 13-15, King James version)]

Background on quantum computation. Quantum computing has become a fast
growing research area in recent years, since Shor [22] has shown in 1994 that quan-
tum computers can factor an integer in polynomial time upon its number of digits.
It is not known whether any classical algorithm can solve the problem in polynomial
time. The factoring problem has numerous implications in cryptography. In par-
ticular the most commonly used algorithm to encode data with a public key is the
RSA algorithm, based on the present difficulty to factorize very large numbers [15,
p.232]. Quantum computers would stir up the field of cryptography. This discov-
ery has focused attention on quantum computing, which is able to bring change in
other domains, such as database manipulation [15, p.248], with algorithms to query
elements in databases, and such as numerical methods, with the ability to perform

efficiently Fourier transform [15, p.216].



CHAPTER 1. INTRODUCTION 2

The basic idea behind quantum computation is to encode data using objects gov-
erned by the laws of quantum physics. In a classical computer, the smallest unit of
data is the bit. On the other hand, the smaller unit of data in a quantum computer
is a quantum bit, or qubit. The laws of quantum physics give the constraints applying
on qubits. Bits and qubits behave in a complete different manner. For instance, a
classical bit can be copied as many times as needed. On the other hand, a quan-
tum bit cannot be duplicated, due to the well-known no cloning property of quantum
states [17, 15]. However, quantum data types are computationally very powerful,
due to the phenomena of quantum superposition and entanglement. A qubit can be
modeled as a normalized vector in a two-dimensional Hilbert space. To understand it
as a piece of information, one has to choose an orthonormal basis, which we denote as
(]0), 1)). The qubit is then written as «|0) + 3|1), with |«|* + |3]*> = 1, and one can
understand it as the superposition of the bit 0 and the bit 1. A state of two qubits
is a vector of the tensor product of the two Hilbert spaces. There are states of the
form |¢1) ® |¢2), but one can also write a state of the form %(|00) + |11)). Such a
state is called an entangled state. The operations that one can perform on a quantum
state are only of two classes, namely unitary transformations and measurements. The
measurement of a qubit acts as a projection on one of the basis elements. For a good

general introduction to quantum computing, see e.g. [17, 15].

Background on functional programming. A functional programming language
is a language where programs are seen as functions: a program is usually a piece of
code that take arguments and return a value. In a higher-order functional program-
ming language, every function is regarded as a value. In that sense one can speak
of a program returning another program. This is a powerful way of understanding
programming. A model of this kind of computation is the lambda-calculus, designed
in the 1930’s by Church [6] and Kleene [12]. It provides an operational semantics for
describing computable functions and evaluation. A complete reference on the subject
is [2].
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The problem. At the moment, computation using quantum computers is mostly
understood as a physical process. Very few programming languages exist for dealing
with this kind of computer. Trying to understand the process of quantum compu-
tation from the point of view of programming languages can help to the discovery
of new applications and to have a better understanding of the semantics of such a

computation.

Review. Recall that a quantum system can evolve by unitary transformations and
measurements. Many existing models of quantum computation put an emphasis on
the former, i.e., computation is understood as the evolution of a quantum state by
means of unitary gates. In these models, a quantum computer is considered as a
purely quantum system, i.e., without any classical parts: Measurements are done
at the end of the experiment, often outside of the formal system. One example of
such a model is the quantum Turing machine [3, 8], where the entire machine state,
including the tape, the finite control, and the position of the head, is assumed to be
in quantum superposition. Another example is the quantum lambda calculus of Van
Tonder [26, 27|, which is a higher-order, purely quantum language without an explicit
measurement operation.

One might also imagine a perhaps more realistic model of a quantum computer
where unitary operations and measurements can be interleaved. As an example,
consider the so-called quantum random access machine model, or QRAM model of
Knill [13], also described by Bettelli, Calarco and Serafini [5]. Here, a quantum
computer consists of a classical computer with a quantum device attached to it. In this
configuration, the operation of the machine is controlled by a classical program which
emits a sequence of instructions to the quantum device for performing measurements
and unitary operations. This situation is summarized by the slogan “quantum data,
classical control” [21]. Several programming languages have been proposed to deal
with such a model [5, 19], but the one on which this paper is based is the work of
Selinger [21].

Van Tonder has built an operational semantics based on linear logic, a resource-

sensitive logic formalized by Girard [9]. The idea to build an operational semantics for
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linear logic has already been explored [1, 28, 4]. As a matter of fact Van Tonder [26]
uses the lambda-calculus described by Wadler [28]. In this calculus, the distinction
between linear and non-linear functions is explicit in the terms. Benton [4] has built
a different model verifying subject reduction. These two languages, however, do
not allow variables to be discarded: constant functions cannot be built. To allow
variable to be discarded, one needs a variant of linear logic, the affine linear logic.
An interesting work on affine linear logic is the work of Propylov [18], who showed
the decidability of affine linear logic. A linear decoration of intuitionistic proofs as

we intend to do was done in 1995 in [7].

The solution proposed. This thesis addresses the issue of building up a higher-
order functional quantum programming language for quantum computation with clas-
sical control. In our language, a program is a lambda term, possibly with some quan-
tum data embedded inside. The basic idea is that lambda terms encode the control
structure of a program, and thus, they would be implemented classically, i.e., on the
classical device of the ()RAM machine. However, some of the data on which the
lambda terms act are possibly qubits, and are stored on the QRAM quantum device.
Because our language combines classical and quantum features, it is natural to con-
sider two distinct basic data types: a type of classical bits and a type of quantum
bits. Higher types, such as integers or lists, can be added as necessary.

The challenge has several aspects. One part is that we want the probabilistic
reduction to be the only side effect. Due to the measurement operation, the reduction
rules are then probabilistic, and one problem we solve is to describe the behavior of the
program with respect to this probabilistic reduction. A second part of the challenge
is that due to entanglement, quantum bits cannot be directly encoded in the lambda-
term. We need a way to encode the qubits of the QRAM in the lambda-term. Another
part of the challenge is that there are two kind of functions: linear and on-linear ones.
In particular, a lambda-term can be duplicable or non-duplicable. Depending on this
ability, it can or cannot be applied to a non-linear function, which use its argument
more than once. Unlike Van Tonder’s lambda-calculus, we want to let the compiler

decide whether or not an argument can be applied to a function or not. Finally, we
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want to be able to discard variables. This requires an affine type system. Neither the
one of van Tonder [26] nor the one of Benton [4], which is linear, can be used. One
may ask whether it is possible to fulfill these requirements.

We give a positive answer to this challenge. We build an expressive programming
language which embeds quantum operations as functions. Using the well-known tech-
nique of type system [16], we are able to decide of the validity of a program in our
language. The type system is based on affine linear logic. The work of Propylov [18]
shows that the problem of the typability of a term is decidable, but, since our pro-
posed type system is only a fragment of the full affine linear logic, we find a simpler

algorithm. We use a similar method to [7].

Plan. The plan of the thesis is the following. Chapters 2 to 4 are background, and
Chapters 5 to 9 are original work. In Chapter 2, we describe more in depth the basics
of quantum computing, and review what is already done. Then, for self-containedness,
in Chapter 3 we develop some results on intuitionistic typed lambda-calculus, expose
the subject reduction, and develop a type inference algorithm for this language. In
Chapter 4 we develop an introduction on linear logic, and explain how this is linked
to our model. The next chapters expose the results found during this master thesis:
In Chapter 5 a discussion on the lambda-calculus and the reduction rules, where we
show how the validity of a program is linked to the choice of reduction procedure. In
Chapter 6 we give a type system for the developed language, and in Chapter 7 we
prove that it verifies subject reduction. Finally in Chapter 8 and 9, we extend the
language and we build a type inference algorithm, based on the intuitionistic skeleton

of the type system.



Chapter 2
Quantum programming

In classical computation, we use classical physics to encode the data. The basic
unit of data is the bit which can take only two values, either 0 or 1. In quantum
computation, we use objects governed by quantum physics laws instead of classical
physics, in order to encode data. The unit of data is called the quantum bit, or
qubit. A quantum bit can be understood as a normalized vector in a two-dimensional
Hilbert space. To understand it as a piece of information, it is customary to choose
an arbitrary orthonormal basis denoted (|0),|1)), and called the computational basis.

A qubit is then a vector of the form
) =al0)+81) o + |8 =1

where o and [ are complex numbers.

There are many possible physical realization of a qubit. It can be encoded in the
polarization of a photon, see Figure 1. If we choose two orthogonal directions as basis,
one can encode superposition by setting the plane of polarization with some chosen
angle of cosine |a|? and sine |3]%.

The juxtaposition of two qubits in states [1;) and |i9) is represented by the tensor
|11)®|1h9), also denoted |1)11)5), which is an element of the 4-dimensional Hilbert space
with basis [00), [01),]10), |11). More generally, if "n ™ is the binary representation of
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for the plane of polarisation

0>

Figure 1: Photon polarization

n with NV digits, a vector of N qubits can be expressed as a sum:

2N 1 2N 1
Z ag|Ti Y, with Z o|? = 1.
i=0 1=0

2.1 Measurements

To retrieve the information stored in a qubit, one has to measure the object that
encodes the qubit. The measurement operation is a map that will project the vector
«|0) + B]1) onto |0) or |1). The measurement yields an observable result which is 0 if
the vector was projected onto |0), or 1 if it was projected onto |1). The process can

be summarized as follows:

al0) + f[1)

10) 1)

«|0) + B|1) projects onto |0) with probability |«|* and onto |1) with probability |3|2.

For example, in the case of the photon, measurement is done using a polarized glass
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and a light detector. This process is probabilistic and collapses the superposition
of data stored in the qubit. When measuring several qubits, the result is similar.
In a two-qubit system agp|00) + cp1|01) + 1p|10) + a4y |11), assume that we want to
measure the first qubit. To understand what will happen, we can factorize the system
as follows:
10) ® (@00[0) + a1 |1)) + |1) ® (a10]0) + 11[1))
The measurement will collapse the state on one of the two subspaces of basis |00), |01)
and [10), |11). It will outcome with probability |ago|? + |ao1|? the state
1

Vo] + |ovor |2

and with probability |aig]? + |y |? the state

0) ® (0]0) + vr[1))

1
Vo] + | 2

Measuring the second qubit is similar, and we can summarize the process with the

1) ® (@10]0) + 11 1))

diagram
0100|00> +0401|0]_ 0110|]_0> +0411|1]_>
|C¥00|2+\a01 : 0410\2+|C¥11|2
L (CY00|00> +Oé[]1|0].>) %(awHO) +CY11|]_]_>)

V/ log[*+|evor |2 V/ leag? e |?

lapgol legy 12 lagol lagq1?
legolZ+lagr |2 oo l2+lagr]? loegol?+lagy |2 ajol?+lagl?

|00) |01)  |10) |11)

and then each sequence of |zy) is reached with probability |a,|?.

More generally, in the quantum system

2N 1 2N 1
daplni™), with ) el =1
i=0 i=0

the probability to get |"¢ ") when measuring the system is |a;|?.
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2.2 Unitary operations and quantum circuits

The other kind of operations we can apply on qubits are unitary matrices, or quantum
gates. A unitary matrix A is such that A¥ = A=! where A is the complex transpose
of A: AH =A

Some important gates are the 3-qubit gate Toffoli, the 2-qubit gate CNOT and
the 1-qubit gates V7 /g, the Hadamard gate H and the phase flip P. They are defined
as follows, with bases always written in the lexicographic order. For a 2-qubit system
for example, the basis is (|00), |01), |10),|11)).

1 1 1 0 1 0
P = Ve = ,
(1—1) (0@> § (0 el“/‘l)

0
1
0

H =

IS

o O =

0
0
0

- o O

01 , o 0
NOT = CNOT = Toffoli =
10 0 | CNOT

A typical quantum computation would be first the creation of an array |000...0),

0 010

then the application of some chosen quantum gates, and finally the measurement of
the result. Note carrying on the same computation twice usually gives two different
results: the results are probabilistic. Inspired by boolean circuits, a good way to
represent the list of unitary gates to apply is to write a quantum circuit. Each qubit
is represented as a wire and gates are boxes that overlap on wires. The diagram is

read from left to right and from top to bottom. For example,

) —G1]
Gy

|#)

computes the state

Gy o (G ® 1) ([¢) ® |9)).
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Note that if z,y and z are bits,

NOT|z) = |1 & z),
CNOT|zy) = |z) ® |z @ x) and
Toffoli|ryz) = |z) ® |y) ® |2 ® wy)

We write NOT as
NOT = |z) —a&—— |1 @ x),

the CNOT as
evor = 19 T8 =)
|2) ——— |2 ),
the Toffoli gate as
) ° )
Toffoli = |y) ® ly)
|2) —&—— |z @ xy)

and the other gates with boxes:

H= |r) —{H}— Hlz),
P=|z) —{P}— Plx),

Vﬂ/g = |:1:> Vﬂ/8| Vﬂ/8|$>.

This set of gates is said to be a universal set of gates, in the following sense:

Definition 2.2.1 A set B of quantum gates is said to be universal if, for any unitary
operator U’ on n qubits and any € > 0, there exists a finite circuit U in those gates,
and some A € C with |\| = 1, satisfying:

|JU—=AU'|| <e  with the norm to be ||A|| = ‘Igiri(|A¢|)

There exist a lot of universal sets of gates. It is not necessary to stick to a specific
universal set since each universal set can simulate any other one. Moreover, one set of
gates can be suited better for a given physical implementation than another universal

set.
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2.3 Entanglement

It is interesting to note that the information is non-local in an array of qubits. Indeed
a 2-qubit system cannot always be written as |¢1) ® [io) with ¢y and v, qubits.
In particular the notion of a pair of qubits cannot be thought of as in classical

computation, where each element of the pair can be reached.

Definition 2.3.1 A 2-qubit state |¢) is said to be entangled if it cannot be written

as [11) ® |1). If we can write it under this form, then it is said to be unentangled.

For example, the state —= (|00> +|11)) is entangled. One cannot separately determine
the values of the first and of the second qubit. The first and the second qubits are
completely linked one to the other: measuring the first will immediately allow us to
say what will be the result of the measurement of the second one:

L ([00) [11))
0.5 0.5

100) 1)

/N YN

00y [01) |10)  |11).

If the first qubit was measured to be |1), then the second one is |1) with probability
1. Similarly, if the first qubit was measured to be |0), then the second one is |0) with
probability 1.

Entangled states are easy to construct: Consider the state
|¢p) = CNOT o (H ® id)(|00)).

This is equal to

1
o) = C’NOTE(|OO> +1(10)).

CNOT maps |00) to |00) and |10) to |11). Since it is linear, we have

1
ﬁ(l00> +11)),

and we reach the previously seen entangled state.

|6) =
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2.4 Simulation of a classical computer on a quan-

tum computer

One may ask whether it is possible to simulate a classical boolean circuit on a quan-
tum computer. One could think that the fact that we can only apply unitary gates
would be a constraint. Indeed, a quantum computation is always reversible. If we
want to compute any arbitrary function f from {0,1}" to {0,1}"™, there might be a
problem since the function might not be reversible. We can circumvent this problem

by replacing f by a reversible function f”:

{0, 1} x {0,1}™ — {0,1}" x {0,1}™
(2,y) — (, f(z) D y).

The reversible function f’ can then be implemented on qubits as a unitary transfor-
mation. However we need auxiliary qubits. First we need some to store the unwanted
information that keeps the computation reversible, and then we need more qubits for

scratch space.
Theorem 2.4.1 Any boolean function can be modeled using a quantum circuit.

Proof. Any boolean function can be written in terms of AND and NOT gates. It
is sufficient to be able to simulate a AND boolean gate, a NOT boolean gate, and to
be able to duplicate a bit. We only need the Toffoli gate:

Toffoli(|z) @ |y) ®10)) = |z) @ |y) ® [z AND y),

and then computing x AND vy is equivalent to computing Toffoli|zy0) and to consider
the third qubit. Similarly the NOT gate can be simulated as follows:

Toffoli(jlz) @ 1) ®@ 1)) =) @)@ 1D x x 1) =|z) ® 1) ® INOT x),

and then computing NOT x is equivalent to computing Toffoli|x11) and to consider

the third qubit. To duplicate a bit x, one can compute

Toffoli(jz) @ 1) @ |0)) =|z) @ 1)@ 0@z x 1) = |z) ® 1) ® |x)
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and we duplicated the bit and placed it in the first and last qubit. Note that in each
computation, we need scratch space. Provided that we are able to initialize a given
array of qubits (i.e. to set each of them in some given state |0) or |1)), we are able

to compute any boolean function. [

Remark 2.4.2 The last quantum circuit only duplicates bits, not qubits: if |z) is

some superposition «|0) + 3|1), since the previous computation is linear it answers
«|010) + B|111)

which is an entangled state.

2.5 Issues specific to quantum computers

Superposition of states. Some issues are specific to quantum computers. In
particular, the power of quantum computation over classical computation is in the
superposition of states. Given an array of n qubits, one can superimpose the binary
representations of all the numbers from 0 to 2" — 1. Since the action on this state
by a unitary transformation will apply it on each one of the pure states that are
superimposed in the qubit by linearity, we are able to do strong parallelism in one

operation. For example, consider the following quantum computation:

1)
[2) —{H }—
[3) —— H|—

Given |000) it computes the state
1
—= (00 + 1) © (10) + 1)) ® (|0) + [1)).
Nk
If we develop, it becomes

ﬁ( |000) 4 |001) + |010) + |011) + |100) + |101) + |110) + |111))
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which is the superposition of the binary representations of all numbers from 0 to

23 —1 = 7. Let U be a unitary operator

1)

|z3)

|y1> ’

o)

computing some boolean operation f : {0,1}3 — {0,1}3, on the first five qubits for
some fixed ¥, ...y,. Then if we compose it with the first quantum circuit, by linearity

it computes the function f on each 7i™ for i = 0...7 in the state superposition:

1 |
U(Tﬂ;FW>®|y1...ym>)=ﬁ§|f(rﬂ)>®|y1...ym>-

This is done in a simple step and would have required 8 computations of f for each
Ti 7 in a classical computation.

Indeed, using an algorithm based on the strong parallelism occurring during quan-
tum computation, Shor [22, 23] proved that using a quantum computer, factorization
of an integer n is of complexity O(logn), far better than any pre-existing algorithm

using classical methods.

Another characteristic is that qubits cannot be duplicated, due to the no-cloning
property. Specifically, there is no operation which inputs an unknown state |¢) and

returns |@) ® |¢). Indeed, such an operation would map «|0) + 5|1) to
(a]0) + B[1)) ® (2]0) + BI1)) = a*|00) + f|01) + a3[10) + 5%[11),

which is not a linear operation (much less unitary).
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2.6 Practical considerations

For quantum computation, a strong drawback is the decoherence phenomenon. A
quantum particle is never alone in its world. There is always interaction with other
particles, coming from the box where the particle is stored or from outer space. All
these interactions act like measurements and modify the state of the particle. This
limits the precision of the computation. Moreover, the decoherence process gets
stronger as the number of considered qubits increases. Quantum error-correction [15]
can be used to compensate this problem, provided the initial decoherence is not to
severe. For the purpose of this thesis, we will ignore this issue, and assume that

computations take place in a perfect quantum world.

2.7 Examples

The Deutsch Algorithm. This is an algorithm to find out whether a boolean
function is balanced or constant. In classical computation, two calls to the function
are needed. In quantum computation, one can find it out in only one call. The

algorithm takes as input a two-qubit unitary operator Uy:

Ur(l2) @ |y)) = |2) @ |y @ f(x)).

The quantum circuit for the algorithm is the following:

0) —{H = v FHHAF—110) & (1)

1) —{H}—v y & f()

To find the answer, we have to measure the first qubit: if it is 0 then the function is

balanced, if it is 1 it is not.
Note that the input of this algorithm is a “black-box”, in other terms a function

from two qubits to two qubits.
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Proof that the procedure is correct. This will compute the following thing:

(H®id)U;(H® H)(|0)®|1))
(H @ id)Us((10) +11)) @ 5(10) —[1)))
= (H®id)Uf%(|00>—|—|10> 01) — [11))
(H ® id)3(|0) @10 + £(0)) +[1) ® [0+ f(1))
—0) @ [1+ f(0)) = [1) ® |1 + f(1)))
= 555((10) + 1) @[£(0)) + (10) — 1)) ® | f(1))
—(10) + [1) @ [1+ f(0)) = (|0) = [1)) ® [1 + f(1)))
= 5500 @ (1£(0)) + [f(1)) = [L+ f(0)) = [L+ f(1)))
+1) @ (1£(0)) = [f(1)) — [1+ f(0)) + [1 + f(1))).

If £(0) = f(1), then [£(0)) — [f(1)) — |1+ f(0)) + |1 + f(1)) = 0 and the result is
1
ﬁ|0>®(|f(0)>+|f(1)>— 14+ f(0)) = [L+ F(1))).
If f(0) =1+ f(1), then |f(0)) +|f(1)) — |14 f(0)) — |1+ f(1)) = 0 and the result is

D@ ([£0) = [f(1) = 1+ £(0) + 1+ F(1)).

~

o
22
So the value of the measurement of the first qubit is 0 if the function f is balanced,

and 1 in the other case. O

The teleportation algorithm. It is a good example of algorithm that is hardly
written in term of quantum circuits: A measurement needs to be done as a part of

the formalism. The procedure can be written as follows:

) (H
M
| |

0) —{H|—e— L

0) > ﬂ 9).

The procedure “teleports” the state of the first qubit to the third one. The dashed-

box M represents the measurement of the two first qubits. The gate U,, depends on
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two classical bits x and gy, which are the result of this measurement:

10
If M outputs 00, Uy = 01 )

0 1
If M outputs 01, Uy = Lo )

1 0
If M outputs 10, Uy = )

0 -1
0 1
If M outputs 11, Uy = Lo ) .

The whole procedure is summarized in four steps:

1. Create an entangled state %(|00> + |11)) with the two last qubits using the

circuit

0) —H]

0) b
2. Rotate the two first qubits, using the circuit

7]
1H ]

N

S
3. Then measure the resulting two qubits.

4. Finally, upon the result, apply the right transformation U to the third qubit.

Proof that the procedure is correct. The rotation processes the following com-

putation
CNOT H®id
00) = [00) = L5(]00) +]10)),
01) = o) = 5(/01) +[11)),
10y = 1) = S5(j01) - [11)),
1) = 1) = 5(/00) - [10)).
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If we apply it to the two first qubits of

(a]0) + BI1)) ® 5(]00) + [11))

= J5(]000) + o[011) + 8]100) + S[111))
we get
3(a(]000) + [100)) 4+ a(]011) 4 [111)) + 5(|010) — [110)) + B(|001) — [101)))
= 3(100) ® (a]0) + B[1)) + [01) @ (5]0) + |1))

+[10) ® (]0) — B[1)) + [11) @ (a|1) — 5]0)))
If we measure the two first qubits, the third qubit becomes

«|0 if 00 was measured,
B0
«|0

all

+ A1
+all
— AN
— A0

if 01 was measured,

if 10 was measured,

~ ~—~— ~ —
T ~ ~— ~—

if 11 was measured.

Finally note that if U,, is applied in the case where x,y was measured, the the state
of the last qubit is a|0) + 3[1). O

2.8 Models for quantum computation

Models of quantum computations essentially fall into two classes. In some models,
there is a quantum device whose operations is controlled by a classical computer.
We refer to such models as having classical control. In some other models, there is
no classical device. The measurement takes place at the end, it is not part of the

formalism. We refer to those models as having quantum control.

2.8.1 Quantum control

One can consider that all the parts of the computation occur in an array of quantum
bits: an algorithm may be written only in terms of quantum circuits. There is no
classical computer to interact with; the whole process is modeled by quantum gates.

The canonical example is the algorithm written in terms of quantum circuits.
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The quantum Turing machine. A way to understand classical computation is
the universal Turing machine. Described by Turing [25], it is an automaton together
with an infinite tape divided into cells and a cursor. Each cell is either blank or
contains a symbol from a finite alphabet. The tape should contain only finitely many
non-blank symbols. The automaton is allowed to read or write what is under the
cursor, or to move the cursor to the right or to the left upon testing the content of
the cell. This very simple machine can model any computation.

Deutsch and Benioff [8, 3] have described a Quantum Turing machine, where
everything is encoded in quantum data: the tape, the cursor, and the states of the

automaton are encoded as a quantum state.

Van Tonder’s lambda-calculus. This model of quantum circuit is a more ab-
stract way for visualizing an algorithm. Van Tonder [26, 27| describes a higher order
language for writing quantum algorithms. His language does not have a measurement
operation, and is encoded in an array of quantum bits. It can then be implemented
in a quantum Turing machine.

The terms are defined as follows:

Term M,N,P == x
e

| M

| Az M

| Al M

(M),

where ¢ ranges over a set of constants, including 0, 1 as well as constants from unitary
gates such as H, the Hadamard gate. The term !M is decorated with ! to indicate
that the term can be duplicated: it is said to be non-linear. Nz.M is an function
that requires a non-linear term as argument.

An example of reduction could be:

g

() (110) —55 L2 ([2)0) + (1) —5 L2(0) + 1)
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Van Tonder defines the notion of well-formed term, constructs a computational
model for his language and proves that given a well-formed term M, if ). o;M; is a

reduction of M, then the M; may differ only in the constants 0 and 1. Moreover:

Theorem 2.8.1 The computational model provided by the lambda-calculus described

by van Tonder is equivalent to the quantum Turing machine. [

2.8.2 Classical control

Another way to see the quantum computation process is to imagine that a quantum
computation is a combination of classical computation, measurements and unitary

operations over quantum bits.

QRAM model. The QRAM model for a quantum computer was described by
Knill [13]. In this model, an array of quantum bits is stored in a special device,
and the device is linked to a universal classical computer, see Figure 2. The clas-
sical device acts on the quantum device by sending to it a sequence of commands
to perform initializations (setting a qubit to |0) or |1}), built-in unitary operations
and measurements. All the classical operations are allowed, they are contained in
the classical computer. One can imagine that there is a special library to talk with
the quantum device, with special functions to measure, allocate and free qubits, and

apply unitary transformations.

Selinger’s flow-charts. A language that is based on the use of a QRAM model is
the flow-charts language from Selinger [21]. This model uses the flow-chart notation
to write programs: it is a super-set of a classical flow-chart language. A program is
a graph together with a cursor that follows the wires, with data attached to it.

The graph is constructed from the rules in Table 1. Adding the notion of loops
and the notion of recursion make the language powerful enough to describe the set of

superoperators.
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Computer

linked on the

] network with access
to the quantum device

Quantum device
accessible from the network

,

~I

- o

Figure 2: A model of quantum computer

A A A A

lnew bit b=0]| |new bit b=1| ‘new qbitqu‘ ‘new qgbit b=1
b: bit,A b: bit,A ¢ qbit. A

q: qbit,A
q1: qbit,...,qn: qbit,A A
qiy...Qp ¥= Un‘ permute ¢
q1: qbit,....qn: qbit,A o(A)

Table 1: Rules for constructing quantum flow-charts



Chapter 3
Lambda-calculus

For self-containedness, we give a brief introduction to the lambda-calculus. For a
more detailed description, see e.g. [2]. We describe a lambda-calculus for writing
boolean functions, and we present the definitions and results that will be used in

later chapters.

3.1 Untyped lambda-calculus

The lambda-calculus is an expression language: a program is an expression which
evaluate to a value. A lambda-expression, or lambda-term, evaluates similarly to

3 4 5: The addition takes two values as arguments, and reduces to a value:
3+5—8.

This notion of reduction is the basis of lambda-calculus.
Also, in lambda-calculus, we have a notation for the notion of function. We write
for example

Ax.x + 3

in place of

T—x+ 3.

We call \x.M an abstraction.

22
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The application of 5 to the previous function is written
(Az.x+3)5.

In general, M N represent the argument N applied to the function M.

A higher-order example is the composition operation. It can be written as
C=\fAg.Az.9(f2),

so that Cfg = f o g. It takes two arguments g and f and returns g o f. Note that a
function in two arguments is expressed as a function in one argument which returns
another function. This notation is called currying [16, p. 58]

We add the notion of pair (P,Q). To be able to recover the content of a pair
(P, Q), we use the term let (x,y)=(P,Q) in N. It evaluates to N with P in place of
x and @ is place of y. This operator is linear in x and y.

A special symbol * is provided, called a unit. This term does not evaluate to
anything.

We formally define a A-term using an abstract syntax called the Backus-Naur
form [14]. Given Vi, a countable set of variables and €y, a set of constants,

Term M,N,P = x

e

| Az M

| (MN)

| if (P M;N)

|

| (M,N)
| let (x,y)=M in N
where x € V.., a set of variable and ¢ € Cy,,, a set of constants. Since this calculus
is for representing boolean functions, we want the constants 0 and 1 to be in Cyeppp,
for representing the boolean values. The term if (P; M; N) is the test operator. The
term Ax.M is a function of an argument x. It is also called abstraction. The term
(MN) is the application of N to M. The term (M, N) is the pair of first element M
and second element N. The term let (x,y)=M in N is used to retrieve the content

of a product. Finally, % is the unit.
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Conventions and notations. Given a pair M, we define two terms (M) and
T2 (M) by

m (M) = let (x,y)=M in x and

(M) = let (x,y)=M in y,
to represent the first and the second projection.

We combine several variable in the same abstraction for clarity:
AT1Tox3. M = Az Axy. Ax3. M.
The application procedure is associative to the left:
My MyM3MyMs = (((My M) Ms)My) Ms.
Finally, the A-abstraction has priority over the application:

Az.MN = Az.(MN) .

Free variables. We can define a boolean AND operator by:
Ax.let (y, z)=x in if (y;if (z;1;0);0)

This is a function (an abstraction), with argument z, supposed to be a pair (y, z),
and returning y AND z. We say that x,y and z are bound by the abstraction. More
generally, a variable occurrence x in a term M is bound if there is an abstraction of
variable x that contains it. A variable that is not bound by any abstraction is called a
free variable. A term that doesn’t have free variables is called closed. More formally,
we will denote F'V (M) the set of the free variables of a term M, defined in Table 2.

a-equivalence. Two terms are called a-equivalent, written M =, N, if they differ

only in the names of bound variables, e.g.
AL.L = AY.Y.

For details on renaming of bound variables, see [2]. From now on, we will identify

a-equivalent terms and consider terms to be equal without further mention.
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FV(z) = {«}
FV(MN) = FV(M)UFV(N)
FV(Ax.M) = FV(M)\ {x}
FV(e) =
FV(if (P;M;N)) = FV(P)UFV(M)UFV(N)
FV(x) = 0
FV((My, My)) = FV(My)UFV(My)
FV(let (x,y)=M in N) = FV(M)U(FV(N)\{z,y})

Table 2: Definition of the set of free variables

Term substitution To evaluate the programs defined by lambda terms, we need
the notion of term substitution. A term substitution is a function from V., to
terms such that o(x) = = for all but finitely many variables x;...xz,. We write
o= {x;— M;, i =1...n}, and we call |o| the set {z;...z,}. We extend it to &

function from terms to terms, defined in Table 3.

Convention. Given a set Y of variables, we write oy the substitution defined by

oly () = { o(x) ifzey,

T else

For full details on the definition of substitution, see [2].

Conventions. If 0 = {z1—M,,...z,—~M,}, we often write M[M,/xy,... M,/,]

in place of a(M).

Fresh variable. Sometimes we need a new variable in a proof. We will call this
variable a fresh variable. By “fresh”, we mean that it has never ever occur anywhere.
Whatever term, substitution or set of variables we may have talked about, the fresh

variable wasn’t there.



CHAPTER 3. LAMBDA-CALCULUS 26

6_((36 = o(x)
6(MN = d(M)a(N)

if (0(P);o(M);a(N))

Il
*

(0(M), 0 (Ms))
= )\.CL‘.O'||G|\{Z}(M)
o(let (x,y)=Nin M) = let (x,y)=0(N) in oljo)\{ay (M)

~— N N e N N

Table 3: Definition of term-substitution

3.1.1 [-reduction

How can we run a program ?
Intuitively, to run a program, we need to reduce the number of applications that

occur, by applying arguments to functions. For example, in arithmetic, to compute
(34+5) 7

one need to first reduce each side of the multiplication to an integer, then to compute

the multiplication. One could write
(3+5)%x7— 87— 56

We say that we reduce the term 3 + 5, We need to reduce it first, since the multipli-
cation is only defined on wvalues.

Formally, we define the single-step S-reduction in Table 4

We extend this relation to —4*, transitive and reflexive closure of —4, and to
=g symmetric, transitive and reflexive closure of —4.

The notion of redex is defined as follows:

Definition 3.1.1 A term () is called a redez if it is of one of the following forms:

(Ax.M)N, let (x,y)=(M,N) in P,
if (0; M; N), if (1; M; N).
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(8) (Az.M)N  —5 MI[N/x]

(if1) if (I, M;N) —p M

(ifo) if (0; M;N) —p N

(let) let (x1,x9)= (Ml,MQM N —p5 N[M,/xy, My/x,)

M —3 M’ N —3 N’
MN —; M'N (e0ong1) 3N —, MN' (congs)

M —8 M’
Ao M — g o M ()

P—)/gPI M—)gMI

(P M5 N) — if (P 0 N) ©) 37 (Py 0 N) — i (P5 307 ) (60)

N—)gN’ 3
if (P; M;N) —p if (P; M; N') (&)

M —3 M’ N—>ﬁ N’
(M, N) —5 (M, Ny (&) (M, Ny —, (M, N7y (&5)

M —8 M’
1
let (z,y)=M in N —p let {z, y)=M"in N (Eet)

N —B N’
2
let (x,y)=M in N — let (z,y)=M in N’ (€ler)

Table 4: [-reduction rules

27
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(Ax.M)N is called p-redex. This allows us to speak of different redexes in a given

term () when different subterms of () are redexes.

Example. Consider the reduction of the following term, where M is any term:
(Az.\y.x) M

Here we have an application: a function of argument x, fed with M. This applica-
tion is called a redex. We have to substitute all free occurrences of x by M in what’s
after the ".”. By doing so, we get Ay.M. We have to be careful: M could contain free
occurrences of y. So we have to substitute the bound variable y by a fresh variable 2
in Ay.x before reducing. The result would be: Az.M. This is the reason why we need
a-equivalence of terms.

An other problem can occur when there is several subterms that are redexes in a
term. We have to make a choice.

To illustrate it, consider the following example. Suppose we want to use this
function to compose the boolean function not and and in order to build the boolean
or function. One can construct them as follows:

not = Az.if (z;0; 1),
and = A\zy. if (z; if (y; 1;0);0).
The boolean function or can be constructed as follow:
or = notAry.and(not x)(not y)
= (Az.if (2;0; 1)) Awy. (Awy. if (w5 if (y; 1;0); 0))
((Az.if (z;0;1)); ) (A if (2;0;1)) y)

Consider the computation of or(1)(0). At each step of the reduction of this term

we have to make a choice of which subterm to reduce. Starting by reducing and

before applying the arguments:

not(\zy.and(not z)(not y))(1)(0)
—p mot(Azy.(Az. if (not x); if (2;1;0); 0)) ((not y)))(1)(0)
—5 not(Azy. if (not z); if (not y); 1;0);0))(1)(0)
—s not(Ay. if ((not 1); if ((not y); 1;0);0))(0)
— 5 mnotif((not 1); if (not 0);1;0);0)
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If we start by reducing (not 1):

—5 ot if ((if (1;0;1)); if (not 0);1;0);0)
— 5 mnot if (0; if (not 0); 1;0);0)

One can either continue with (not 0), or reduce the first or, or reduce directly
if (03 if ((not 0); 1;0); 0).

If we reduce directly:

—5 mnot 0
—p if(0;0;1)
—)/3 1

With this reduction choice, or 1 0 = 1.
Lemma 3.1.2 If M is closed, and if M — g M', then M' is closed.

Proof. By easy induction on the derivation of M —4 M’, it is sufficient to prove
that FV (M) 2 FV(M'). O

A central property of f-reduction is the confluence, also known as the Church

Rosser Theorem:

Theorem 3.1.3 Given M and N two lambda-terms such that M =g N, there exists
a term P such that M —3* P and N —g* P. ]

One can find a complete discussion for this result in [2, p.54].

3.1.2 Reduction strategies

As we have seen, there can be several different redexes in a lambda-term, and the
question arises in which order to reduce them. The order of reduction often does
matter. For example, consider (Az.0)M, with M reducing to a value in 100 steps.

We can choose to first reduce the argument M, and the reduction takes 101 steps to
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reach a value. On another hand, one can start by reducing the lambda-abstraction.
Then we reach in one step
()\IO)M —B 0

Therefore, when specifying a programming language, it is customary to fix a reduction
strategy. A reduction strategy specifies, for any given term, which redex, if any, to
reduce in the next step.

A standard reduction strategy, or way to choose which subterm to reduce first, is
called call-by-value. For a more complete discussion, see [16]. The idea is to start by
reducing arguments before applying them. This is the strategy we applied on (3+5)x7:
we need to first reduce 3 + 5 to a value before computing the multiplication. The
key-point in call-by-value is an abstraction is consider as being a value: that we never

reduce an abstraction. The values are defined as follows:

Value U,V =
|

| Axe.M

UV

|

* .,

Let M, M', N and N’ be terms, x a variable and V', V; and V5 values. The call-
by-value reduction rules are found in Table 5. These rules implements a call-by-value
strategy: A [-redex is reduced only if its argument is already a value. Similarly, in
an application M N, the reduction always occurs first in the argument N if it is not

already a value. Hence M starts reducing only when N is reduced to a value.
Lemma 3.1.4 IfV is a closed value, there is no term M such that V —cpy M.
Proof. No rules can be applied, so no reduction is possible. [

Lemma 3.1.5 the call-by-value reduction strateqy is deterministic: If M — ¢y M’
and M —>CBV M", then M' = M".

Proof. By structural induction on M and inspection of the possible rules, only one

rule can be applied for each case. [
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(8) (Az. M)V —cpy M[V/z]
(f1) if (1; M;N) —cpy M
(Zf ) Zf(oa M; N) —cpy N
(let) let (xy,22)=(Vi,Va) in N —5  N[Vi/z1, Va/xs]
M —cpy M’ N —cpv N/
MV —cpy M'V (cong,) MN — gy MN' (cong,)
P —cpv P
if (P M N) —sopy if (P50 N) (i)
M —cpy M’ ) N —cpv N’ ,
(ML N) —veny Ny &) Ny =0 (V) (&)
M —cpy M’
let <$,y>:M in N —cpy let <l‘,y>:M’ in N (glet)

Table 5: Intuitionistic call-by-value reduction strategy

3.2 Typed lambda-calculus

The notion of lambda-term is a powerful way of representing functions and programs.
But we need a way to prevent run-time errors as much as possible. For example,
if (Az.x; 1;1) cannot be reduced, but it is not a value. It is a run-time error. The
usual way to prevent them is to use what is called a type system. A type is a
structure that we associate with a term to define the behavior of this term in a piece
of code. For example, in a program, you may want to know if a variable is a string,
to check if you are allowed to concatenate it with another string. You may also want
to know if a variable refers to a function, and what kind of function. This notation
makes the program more readable by the programmer to determine exactly how to
use an expression. A term which admits a type is called typable. A term together with
a type is called well-typed. A powerful enough type system must verify two things.
It should verify the safety property. This include the preservation theorem, also
known as subject reduction, and the progress theorem. A programming language
that verifies subject reduction is such that any program keeps the same type while

reducing. The progress theorem states that a well-typed term is either a value or can
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be reduced.

It should also have a type inference algorithm. Given a term, the algorithm has
to answer whether or not the term is typable. If it is typable, the algorithm could
also give back, if possible, a characterization of the set of all possible types for the
term. This algorithm is useful for the programmer since he does not have to specify
the type manually.

In this section, we describe a type system for the lambda-calculus defined above,

and discuss the safety property and a type inference algorithm.

Type system. Following the mathematical intuition, denotationally a type is a a
set, of A-terms. We have a notion of function, a notion of product and some basic

terms. We need at least

Type A, B ;=
|
|
|
|

where a spans €y, a set of type constants and X spans V., a countable set of type
variables. Cyy,. needs to contain at least bit, to store the term constants 0 and 1. The
notation (A = B) stands for the set of functions of domain A and co-domain B, and
(A x B) for the set of pairs of an element in A and an element in B. T is the type

with a single element x.

Typing rules. A term with free variables can only be well typed if its free variables
have a well-known type. This is the reason why we define what is called a typing

Judgment. A typing judgment is a tuple
Aw M:B

where M is a term, B is a type, and A is a set of variables |A| = {zy,...2,}

together with a function Ay from |A| to the set of types. We usually denote A by
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A»c:AC(C) A,x:A»x;A(x)

Ayz:Aw M : B ) Aw» M:A=B A»N:A( )
A» e M:A= B Aw» MN:B app

Ap P:bit A M:A Ap N:A
Aw if(P,M;N): A (if)

APMllAl APMQIAQ
A><M1,M2>IA1 XAk (X)

A M:CxD Ax:C,y:Dw» N: A
Apx: T (T) Aw let (x,y)=M in N : A (let)

Table 6: Typing rules for the simply-typed lambda-calculus

{x1 © Ay, om0 An}, with A, = Ap(z;). A is called a typing context. A typing
judgment is said to be valid if it can be derived from the rules in Table 6.

We write Ap, Ay for Ay U Ay with [Ay] N [Ay] = 0. We also write A, x:A for
A, {x:A}.

For each term constant ¢ € Cyepmy, fix a type A., such that Ay = Ay = bit.

3.2.1 Properties of typing judgments

Lemma 3.2.1 (Weakening) Ifz ¢ FV (M) and A, x:Aw M:B is valid, then
Aw» M:B
is also valid.

Proof. By structural induction on the typing-tree of A, z:A» M:B.

(¢) M =cand B=A.. Then Aw» M : B is an application of the (c) rule.
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() M =y, y+# xsince x ¢ FV(M). From the rule, y € |A|. So A» M : B is valid,
applying ().

(A) M = A\y.P. The typing tree starts with

A, z:A,y:C» P:D
Az Aw \y.P.C = D.

From the definition of contexts, y # x. Then since v ¢ FV (M), = ¢ FV(P).
Applying induction hypothesis, one gets that A, y:C' » P:D is valid. (\) can be
applied: A » \y.P:C = D is valid.

(app) M = NP, and the typing tree starts with

A,x:AbN:C:>D A,:r:A'bP:C'( )
A, z:Aw NP:D wp)

Since FV(NP) = FV(N)U FV(P), x ¢ FV(N) and x ¢ FV(P). Then we
can apply the induction hypothesis: Ap» N:C'= D and A, z:Aw» P:C are valid.
Applying (app), one gets that A » NP:D is valid.

(if) M = if (N; P;Q), and the typing tree starts with

A,z Aw N:bit A,z Aw P:A Az Aw Q:A (if)
A,z Aw if (N; P;Q):A !

Since FV (if (N; P; Q) = FV(N)U FV(P)UFV(Q), ¢ FV(N), z ¢ FV(P)
and z ¢ FV(Q). Then we can apply the induction hypothesis: A » N:bit,
Ap P:Aand A » @Q:A are valid typing judgments. With rule (if) we get that
A if (N; P;Q):A is valid.

(x) M =(M,..., M), and the typing tree starts with

A,x:Ab'Ml:Al A,:r:Ab.MQ 0 Ao
A,.I‘ZA><M1,...,M]€>1A1X...XAk
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Since FV ((My, My)) = FV (M) U FV (M), the induction hypothesis apply on
each branch of the typing tree, and A » M; : A; is valid for all . One can apply
(x), and we get

A (M, M) : A; X Ay

is valid.

(T) M =% and the typing tree is

Az Awx: T
Applying this rule, one see that A » *:T is valid.
(let) The typing tree starts with

A,z Aw M:C x D A, z:A,y:C,z:Dw» N:A
A,z Aw et (y,z)=M in N:A

Since FV (let (y,z)=M in N) = FV(M) U (FV(N) \ {y,z}) and from the
definition of context, ¢ FV(N) and x ¢ FV(M). Then we can apply the
induction hypothesis: A, y:C, z:Dw» N:A and Aw M:C' x D are valid. Applying
(let), one gets that A » let (y, z)=M in N:A is valid.

0
Lemma 3.2.2 (Renaming of variables) Given a valid typing judgment
Ajz:Cw» M:A

and z a fresh variable, A, z:C'» M[z/x]: A is valid with a typing-tree of the same depth
as the typing tree of A, x:C'» M:A.

Proof. By induction on the typing tree of A, z:C' » M:A.

(¢) M =¢, A= A, and the typing tree is

Ajz:Cwc: A,

Moreover, M[z/x] = ¢ Applying this rule from scratch, A, z:C' » ¢ : A, is valid.
Hence the result is true in this case, and the typing tree has a depth of 1.
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() M =y, so there are two cases. First, one can have y = 2. A = C and the typing

tree is

Ajz:Cwax:C
M|[z/x] = z, so directly from (z)

Az:Cwz:C
is valid with typing tree of depth 1.

(A) M = lambday.N. The typing tree starts with

D w
A, z:C,y:A» N:B
A,z:Cw» \y.N:A=B

From the definition of concatenation in typing judgment, x # y. From induction
hypothesis, A, z:C, y:A» N|[z/x]: B is valid with typing tree w’ of depth the depth
of w. Applying (1)), one get

A, z:Cw» \y.(N[z/x]):A= B

since y # x, A\y.(N[z/z]) = (A\y.N)[z/z]. So A,z:C» M[z/z]:A = B is valid
with a typing-tree of the same depth as the typing tree of

A, x:Cw» M:A= B.

(app) M = NP. The typing tree w starts with

- -
Ajz:Cw» N:B=A AxzCw»P:B
Ajz:Cw» NP: A (app)

d(w) = 1 + max(d(w;), d(ws)). From induction hypothesis
A, z:Cw» N[z/x]: B=>A and A, z:C' » P[z/x]: B

are valid and of depth d(w;) and d(ws).
From (app) and the fact that (NP)[z/x] = N|[z/z|P[z/z],
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A, z:Cw» (NP)[z/z]: A
is valid of depth d(w).

(if) M = if (P;Q; N). The typing tree w starts with

- - g
A,x:Coe P:bit Az:Cr»@Q: A A,x:C’bN:A(if)
Ajz:Cow if(P;Q;N) - A

d(w) =1+ max(d(w;), d(ws), d(ws)). From induction hypothesis,
A, z:Cw» Plz/x]bit, A, z:2Cw» Qlz/x]:A and A, 2:C » N|z/x]:A

are valid of depth d(w,), d(ws) and d(w3). Applying (if ) and from the definition
of substitution,
A, zCw if (P;Q; N)[z/z|:A

is valid of depth d(w).
(x) M = (M, Ms), and typing tree w starts with
w1 w9

A,:r:C'b. M, : Ay A,:r:Cb. My : Ay (x)
A,J)IC > <M]_,M2> . Al X Ak

d(w) =1+ max(d(w;), d(ws)). From induction hypothesis,
A, z:Cw M[z/x]:A; and A, z2:C » My[z/x]: Ay

are valid of depth d(w;) and d(ws). Applying (x) and from the definition of
substitution,
A, z:Cw (M, My)[z/x]: Ay x Ay

is valid of depth d(w).
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(let) The typing tree starts with

A,z Aw M:C x D A, z:A,y:C,t:Dw N:A
A,z Aw let (y,t)=M in N:A

By induction hypothesis,
A, zzAw M[z/z]:C x D and A, z:A y:C,t:Dw N|[z/z]|:A

are valid. From the definition of context, z is different from y and ¢, so
(let (y,t)=M in N)[z/xz] = (let (y,t)=M]|z/x] in N[z/z]). Then applying
the (let) rule,

A,z Aw (let (y,t)=M in N)[z/z]:A

is valid.
(T) M =%, A=T and the typing tree is
Ayz:Cwx:T

Moreover, M|[z/x] = % Applying this rule from scratch, A, z:C » *:T is valid.
Hence the result is true in this case, and the typing tree has a depth of 1.

U
Lemma 3.2.3 (Substitution) Given
A, x1:Chy . 2, CL e MEA,

Aw N;:C; Yi=1...n,
and
o={x;—»N;, i=1...n},
the typing judgment A w 6(M):A is valid.
Proof.

The typing-tree of A » 6(M):A is constructed by induction on the structure of
the typing tree.
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(¢) a(c) = ¢, then applying the same rule (¢), A » c:Ais valid.

() In this case, M = x. Since 7(x) = o(z), there are 2 cases: either z ¢ |o|, and so
xz € |A] and o(x) = z: from the rule (z), A » x:A is valid. In the other case,
x=u; € |o|,so A= C; and o(x) = M;. But from the hypothesis, A » M, : C;

is valid. So in both case, the result is valid.

(M) In this case, M = Az.N. The typing tree starts with:

A,z:C'» N:D
Aw» \e.N:C =D

g(Az.N) = Xz.6'(N) =, with z a fresh variable and ¢’ = o0 o {z+—z}. From
Lemma 3.2.2, A, 2:C » N[z/z|:D is valid, and the typing tree have the same
depth as the one of A, z:C'» N:D. By induction hypothesis,

A, 20 » 6(N[z/a]):D.
Since 6(N[z/x]) = ¢'(N), applying (A),

Aw o(Ax.N):C = D
is valid

(app) In this case M = NP. The typing tree is:

Ap N:C=D Aw» PC
Aw NP :D

From induction hypothesis, A» 5(N):C' = D and Aw» &(P):C Applying (app),
Aw» 6(N)a(P): D is valid. Since 6(NP) = a(N)a(P).
(if) In this case M = if (N; P; Q). The typing tree is:

A N:bit AwP:C Ap@Q:C
A if(N;P;Q) : C

From induction hypothesis,

Aw» aN:bit, Aw cP:C and Aw» 5Q:C.
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Then, applying (if), A » if (GN;P;5Q):C is valid. Since
if (GN;5P;6Q) = o (if (N; P;Q)),
the result is true in this case.

(x) M = (M, My). The typing tree starts with

A>M1:A1 A>M2 AQ
A (My, My) : Ay x Ay

By induction hypothesis, for all i, A » ¢(M;) : A; is valid. Applying (x) and
using the relation & ((M;, Ms)) = (5(M;),5(M,)), the typing judgment

AN 2 5’(<M1, M2>) . A]_ X A2
is valid
(let) The typing tree starts with

A xq:Ch, ..  2p:Cp » M:C x D A x:Cy, .. .xn:On,y:C,t:D » N:A
A zq:Ch, .oz Cp e et (y,t)=M in N:A

By induction hypothesis,
Aw oM:CxD and A,y:C,t:Dw» oN:A
are valid. From the definition of context, x is different from all z;, so
a(let (y,t)=M in N) = (let {y,t)=aM in GN).
Then applying the (let) rule,
A G(let (y,t)=M in N):A
is valid.
(T) M = % and the typing judgment is
Ap s T

(%) = * so the typing judgment A » 7(x):T is valid.
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U

Theorem 3.2.4 (Subject Reduction) If A » M:A is valid and M —3* N then
Aw» N:A is valid.

Proof.

It is sufficient to prove it for —3. We will do that by structural induction on
the derivation of M — 4 N: For all valid typing judgments A » A : A, the typing
judgment A » N : A is valid.

(B) In that case, the rule is
(A2.P)Q —5 P[Q/x]

and (Az.P)Q has for unique typing tree

A,x:A'b P:B

A» \e.PPA=B AwQ:A
A» (\z.P)Q:B

From Lemma (3.2.3) one can deduce that A » P[Q)/z]:B is well typed.

(ify) The rule is
if (0; M;N) —p5 N

and if (0; M; N) has for unique typing tree

Ap(Q:bit AwM:A Awm N:A
Aw if (1;M;N): A

There is nothing to do: A » N:A
(if ) For the same reason as above, A » M:A

(let) In this case the rule is

let (x,y)y=(My, M) in N —5 N[M;/x, My /y]
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and let (x,y)=(Mi, M) in N has for unique typing tree
A > M]_ZC A > MQZ_D
Aw (M, My):CxD Ajx:Coy:Dw» N: A
A let (x,y)y=(M, M) in N : A

(let)

Applying Lemma 3.2.3, one can conclude that
A N[M,/z, My/y]
is valid.
(cong,) The rule is

M—>5M’
MN 5, MN ("9

and M N has for unique typing tree

Aw» M:A=B Ap N:A
Aw» MN:B

By induction hypothesis, A » M':A = B is valid. Applying (app), one get
Aw» M'N:B

(cong,) The proof is similar as for (cong,): the rule is

M—)ﬂM’
MN s, M7 (")

and M N has for unique typing tree the same as above. From the induction

hypothesis, A » N":A. Applying (app), one get
Aw» MN'":B

(if") and (x?) The proof is the same as the one for (cong;).
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(&) The (&) rules are all on the same model. Here is the proof for (&)).

P —)g P’
\x.P —B \x. P’ (6)

and Ax.P has for unique typing tree

Az:A» P:B
Aw» \r.P:A= B.

By induction hypothesis, A,z : Ap» P': B. Applying (\) one get the result:

Aw \z.P:A= B

O
Corollary 3.2.5 If A» M:A and M —cpy* N then Ap N:A.

Proof. Using Theorem 3.2.4 and the fact that every call-by-value reduction is also

a [(-reduction, the corollary is true. [

Theorem 3.2.6 (Progress) If »M:A is valid, either M is a value, or M reduces

to some term N by call-by-value.

Proof. We prove it by induction of the derivation of »M:A. If M is a value, there

is nothing to prove. If it is not, then there are the following cases

M = NP. By the (\) rule, »N:B = A is valid for some type B, and A » P:B is
valid. By induction hypothesis, either N or P reduces, or they are both values.
If they are both values, then N = Ax./N’ since this is the only value that can
have type B = A. And thus call-by-value reduction applies with rule (3). If
one of N or P is not a value, then a call-by-value reduction can also be applied,

by rule (cong,) or (cong,).

M = if (N; P; Q). By the (if) rule, »N: bit is valid. Either N is a value, in which
case N =0 or N =1 and M reduces by the (if,) or (if,) rule, or it is not, and
(&ir) can be applied.
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M = let (x,y)=N in P. By the (let) rule, »M:A is valid and comes from
»N:CxD and x:C,y:Dw» P:A.

First case N could be a value, and then N = (V;,V5). In this case, the (let)
reduction can be applied. In the other case, by induction N can be reduced.

Then &, can be applied.

O

3.2.2 Type inference algorithm

With the subject reduction and the progress theorems, we are able to certify the
well-behavior of a program during reduction using a type system: A well-typed term
can never produce a run-time error. In consequence, we are interested to know if
given a lambda-term, this term can be well-typed.

Given a typable term, there exist a lot of possible types for this term. Consider

the term Axy.xy. All these are valid typing judgments:

»A\zy.zy:(a= X) = (o= X),
(@ x bit) = a) = ((a x bit) = «),
(a=Y)=(axA)=(a=Y)=(axA)),

C = bit) = (C = bit).

»\ry.Ty:
> \ry.xy:

~—~~ Y~

> \ry.xy:
One can see that there is a general form form this typing judgment, namely:
» \ry.cy: (A= B) = (A= B).

More generally, every term in the simply-typed lambda-calculus has a most general

type. We now make this notion precise.
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Type substitution We define a type substitution to be a function from V. to

types. We extend this notion to a function & from types to types as follows:

o(X) = o(X)

o(a) = «

a(T) T
(A= B) = d(A)=3d(B)
d(Ax B) = a(A)xa(B)

Given a typing judgment A = {z1:A;...x,:A4,}, we write
oA = {.7}]_35'141 .. xnﬁAn}

With the definition of type substitution, we are able to say that a type A is said
to be more general than a type B, if there exists a type substitution o such that
d(A) = B. We also say that B is an instance of A. We can also define this concept
for typing judgments, type derivation and substitutions: ¢ is more general than 7 if

there exists p such that poo = 7.

In the previous example, the typing judgment
p\ry.ay: (X =Y)= (X=Y)
is more general than all the other ones we gave.
Lemma 3.2.7 Given o and 7 two type substitutions, 5 ort= 3o 7. [J

Lemma 3.2.8 Given a valid typing judgment Aw M : A, for any substitution o, the
typing judgment A w M : G A is valid.

Proof.
by structural induction on the typing tree of A » M : A.

(¢) The rule is A » c:A.. For all ¢ € Ve, 6(A:) = A.. Hence  » c:5 A, is valid.

(T) is similar as the previous case.
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(x) The rule is A, z:A » 2:A. the image of this typing judgment by o is
oA, x:0AP» 1. 0A
which is valid applying (z).
(A) The rule is

Ajx:Aw M : B
Aw \e.M: A= B

By induction hypothesis
oA, z:0Aw» M:GB

is valid. Applying (A) and from the definition of &,
gAw» \e.M : (A= B)
is valid.

(app) The rule is
Ap M:A=B ApN:A
Aw» MN : B

By induction hypothesis

dgAw» M:6(A= B) and
cAw» N:GA
From the definition of &
cAw» M:5A=0B
is valid. Applying (app)
ocAw» MN :0B

is valid.

(if) The rule is
Ap P:bit A M:A Ap N:A
Aw if(P;M;N): A

46
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By induction hypothesis

ocAw P:gbit,cAw» M :5A and
cAp» N:cA

are valid. Since & bit = bit, one can apply (if) and
gAw» if(P;M;N):GA
is valid.
(x) The rule is

APMllAl A>M21A2
A><M1,M2>ZA1XA]C

By induction hypothesis
oA > M1:6A1 and
6A > Mgié’AQ
Since 5’(141 X Ak;) = 5'141 X 6'142,

aA» <M]_,M2> . 6'(A1 X Ak)
is valid.

(let) The rule is
Aw» N:.CxD A,z:C,y:Dw» P:A

Aw let (x,y)=N in P:A

By induction hypothesis,
A w» N:g(CxD) and A, x:6C,y:6D » P:GA.
Since (C'xD) = 6C'xa D, one can apply (let) and
gAw let (x,y)=N in P:GA

is valid.
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Unifiers Given two types A and B, we define a unifier of A and B to be a type
substitution o such that 6(A) = 6(B). We say that o is principal, or most general, if
any unifier o’ of A and B is less general than o. For a complete discussion on unifiers,
see [16, p.326].

Given two types A and B, we construct a substitution unify(A, B) from the al-
gorithm, provided that a unifier exists for A and B (else the algorithm fails), as

follows:
unify(X, X) = 0,
unify(a, «) 0,
unify(T,T) 0,
unify(X, B) {X— B} it X¢FV(B),
unify(B,X) = {X B} if X ¢ FV(B),
unify(A=B,C=D) = Too o = unify(A, C) and
7 = unify(5(B),5(D)),
unify(Ax B,C x D) = Too o = unify(A, C) and
r = wnify(o(B), a(D)),
else fails.

For example, a unifier for X = (Y x bit) and (W = bit) = W is

X +— (Y x bit) = bit,
W +— Y X bit
It maps both types to (Y x bit) = bit) = (Y x bit).
The unifier is a substitution on types: sometimes it doesn’t exist. For example,
there is no unifier for X =Y and W x Z. Since we do not have a recursive type system,

there is no unifier for Y and X x Y. Such a unifier would give X x (X x (X x (...)))

and such an infinite type is not allowed.

Lemma 3.2.9 (Unification) unify(A, B) gives a most general unifier of A and B,

or fails if there is no unifier.

Proof. A sketch of the proof is given. A complete proof can be found in [16, p.328].
First we show that unify(A, B) is a unifier for A and B. We prove it by induction
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on the derivation of unify. Then suppose there exists a unifier p for A and B. We
prove by induction on the derivation of unify(A, B) that p = po unify(A, B). And so
unify(A, B) exists and is more general than any other unifier, if any: it is a principal

unifier. O

Type inference algorithm. Now, extending the notion of principal unifier to typ-
ing judgments, infer(Aw M : A) is define in Table 7. This definition and the following

lemma come from [20, p.60]

Lemma 3.2.10 Given any (valid or non wvalid) typing judgment A w M:B, 0 =
infer(A w M:B) returns the principal substitution such that A w M:GB is valid, or
fails if there is no substitution such that 6 A w M:6B is valid. Such a substitution is
called a unifier for the typing judgment.

Proof.

We prove the lemma in two steps:

1. If o = infer(A » M:A) exists, then A » M:5A is valid, proved by induction
on the derivation of infer(A » M:A).

infer(A,xz:Aw» 2:B) returns o = unify(A, B). So 6A =B, and
oA, z:0Aw x:0B is valid.
infer(A w x:B) returns o = unify(B, T). Since 6T =T,56B =T.
Hence 6 A » *x:6B is valid.
infer(A w ¢:B) returns o = unify(B, A.). For all ¢ € Vi, TA, = A, for any
type substitution 7. Thus 6B = A,, and A » c:6B is valid.
infer(Aw MN:B) returns 7 o o, with
o = infer(Aw» M : X = B),
T = infer(cAw» N :0X) and
X a fresh variable.

By induction hypothesis, ¢ and 7 are such that A » M : 6X = ¢B
and T6A » N : 76X are valid. 6A» M : X = 6B) is valid then by
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infer(A,z:Aw 2:B)
infer(A » %:B)
infer(A » c:B)

infer(Aw MN:B)

infer(A w \x.M:B)

infer(Aw (M, N):B)
infer(Aw if (P; M; N):B)

infer(Awlet (x,y)=M in N:A)

unify(A, B)
unify(B, T)
unify(B, A.)

ToO

o = infer(Aw M : X = B)

T = infer(GAw» N :5X)

X fresh variable

ToO

o = unify(B,X =Y)

T = infer(c A, z:6 X » M:5Y)
X, Y fresh variables

Topoo

o = unify(B,X xY)

p = infer(cAw» M:5X)

T = infer(pg A » N:pcY)

X, Y fresh variables
nNoTopoao

o = infer(Aw» P:Y)

p = unify(c, bit)

T = infer(pg A » M:pcB)

n = infer(TpaA » N:TpcB)

poo

o = infer(Aw M:X; x Xs)

p = infer(GA,z:6X,,y:0 X » N:GA)
X1, Xy fresh variables

Table 7: Type inference algorithm for the simply-typed lambda-calculus

50
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Lemma 3.2.8 7T6A » M : 76X = 76 B is valid. Applying (app),
ToAw» MN : 768
is valid.
infer(A » A\x.M:B) returns 7 o o, with o = unify(B,X =Y),
T = infer(cA,z:6 X » M:GY)
and XY fresh variables. By induction hypothesis, o and 7 are such that
d(B)=0d(X)=0(Y) and
7oA, v:70 X » M:T0Y
is valid. Applying (A\) and since 76(B) = 76(X) = 7a(Y),
ToA D \e.M: 76 B
is valid.
infer(Aw (M, N):B) returns 7 o po o, with
o = unify(B,X xY),
p = infer(cAw M:5X),
T = infer(pgAw» N:pgY') and
X, Y fresh variables.
From induction hypothesis,
poAw M:ps X
and
7p5 A » N:7p5Y
are valid, and 6B = 6.X x Y. Thus
Fpo A M:7p5 X

is valid using Lemma 3.2.8, and 7poB = TpoX x TpoY. Thus, applying

(),
TpoAw (M,N):TpsB

is valid.
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infer(Aw if (P; M; N):B) returns 7jo 7 o po o, with

o = infer(Aw» PY),
p = unify(cY, bit),
T = infer(pg A » M:pcB) and
n = infer(Tpo A » N:TpsB).
So by induction hypothesis,
oA » P:gY,
Tpo A » M:7pc B and
7 pa A » N:ij7 p5 B
are valid, with paY = bit. Applying Lemma 3.2.8,
77p6 A » P:j7pgY and
77 pa A » M:i7po B
are valid, and 77paY = bit. Applying (if),
nTpa A w if (P; M; N):n7pc B
is valid.
infer(Awlet (x,y)=M in N:A) returns po o, with
o = infer(Aw M:X; x X5)
p = infer(cA, x:6X,y:6Xy > N:GA).
So by induction hypothesis,
ANl 2 M: 50X, x X, and
pa A, x:pa Xy, y:pa Xo» N:pgA
are valid. From Lemma 3.2.8,
ﬁ&A > Mﬁ&Xl X ﬁ&XQ
is also valid. Applying (let),
paAwlet (x,y)=M in N:pcA

is valid.

52
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2. If there exists a substitution p such that
pPA» M:pA
is valid, then o = infer(A » M:A) exists and po o = p, proved by structural

induction on M.

(¢) Since A, does not contain any type variables and since pA » ¢:pA is equal
to pA,x:A. » c:A., we have the equality pA = A., or A = A.. Since

unify(Ae, Ae) = id, o exists and is equal to id. In particular, po o = p.
(T) This case is done similarly, replacing A, with T.

(x) The typing judgment pA, x:pAwx:pB is valid, then pA = pB. In particular,
p is a unifier for A and B. Then a most general unifier can be found from

Lemma 3.2.9, and it is given by unify(A, B). From the definition,
infer(A, x:Aw x:B) = unify(A, B).

Hence it exists, and from the property of unify, poo = p.

(app) 1f
ﬁAl, ﬁAQ, ﬁ'F > NPﬁA

is valid, then from the rule (app),
pA1, pIl'» N:B = pA
pAy, piT'» P:B
are valid. In particular, given a fresh type variable Z, the substitution
¢ =pU{X — B} is such that
JAL T e N (Z = A)
SN PT w Py 7

are valid. By induction hypothesis, the inference algorithm succeeds on
Ay, 'T'» N:Z = A, and returns a substitution o; such that g/ ooy = p'.

Since
pPAL T e PpZ
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is equal to

pooA,poo!'w» PpooZ,
by induction hypothesis, the inference algorithm succeeds also on
aAy,a!ll'» PoyZ,
and returns a substitution o, such that p/ o G, 009 = p' ooy = p'. The

substitution infer(Ay, Ay, IT'» NP:A) is defined to be g o 05.

The proof is similar for the remaining cases
O

Theorem 3.2.11 (Type inference algorithm) A given term M is typable if and

only if
o =infer(x1:Xq,... 2 X, > M :Y)

with FV (M) = {x1 ... z,} doesn’t fail. Moreover, a principal typing judgment for M
18
r1:0X1,...2:0X, » M :0Y

Proof.
If M is typable and
1AL, Ay, Mo B

is a valid typing judgment, then
p={X1— A,...X,,» A,,Y - B}

is a unifier for

r1: X, .. Xy MY

hence, nfer won’t fail, and will return a most general unifier, from Lemma 3.2.10.
On the converse, if the algorithm does not fail, it gives back a principal unifier, so

the term is typable. [



Chapter 4
Linear Logic

The type system used in Chapter 3 is based on intuitionistic logic. Linear logic
was introduced by Girard [9] as a resource sensitive logic. One of the basic rules of
ordinary logic is the contraction rule which states that given a valid proposition A
one can deduce A A A. This rule can be viewed as a duplication of the formula (or of
the resource) A. In linear logic, the duplication of resource is in general not allowed,
and the contraction rule is dropped. Formulas for which duplication is allowed are
explicitly written as !A.

In intuitionistic logic, there are two ways for introducing a conjunction:

Ap A Ap B Ap A T'»B
Aw» AANB LA ANB

They are in fact different: the first one is a superposition, and the second one is a
juxtaposition. In intuitionistic linear logic they yield two different conjunctions: the
first is called the additive conjunction and is written & , the second is called the
multiplicative conjunction and is written ®. @ is the additive disjunction, and —o is

the linear implication:
0 for & T for &, 1 for ®.

For a more complete discussion, see [11].

More formally, a formula in intuitionistic linear logic is defined by the following
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abstract syntax:

A B, C == A
| (A® B)
| (A—B)
| (A& B)
| (A® B)
| O|1]T.

A sequent in intuitionistic linear logic is a pair
A> A

where A is a set of intuitionistic linear logic formulas and A is an intuitionistic linear
logic formula.

The rules are found in Table 8. Note the absence of structural rules of weakening
and contraction.

To be able to manipulate duplicable elements in linear logic, a special unary
connective is provided. We denote !A a term on which one can apply weakening and
contraction. We say “bang A” for !A. The rules we need to add are in Table 9

A sequent Ay, ..., A, > B in intuitionistic linear logic can be interpreted as a rule
for transforming resources A, ... A, into a resource B. The point is that A;... A,
are used up in this process, and cannot in general be used more than once.

A good example is the example of the restaurant, inspired by Girard and La-

font [10]. Consider the following menu:

fruit or seafood (in season)
main course
all the chips you can eat

tea or coffee

You have two kinds of choice: the choice between fruit and seafood is made for you,
depending on what is available, and the choice of tea or coffee is let to you. Only one
main course will be brought to you, but you can eat as many chips as you want. This

menu translates into:

(fruit @ seafood) ® main ® !chips ® (tea & coffee)
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Logical axiom CUT rule

P>A AA> B
A A A B

Multiplicative fragment

Ap>A I'>B >, AAB
AT>A®B A>A—B >1

AAB>C ABp>C I'>DA Ap A
ANARIB>C ATA—oBpr>C A/1>A

Additive fragment

A>A A>B A> B -
A> A& B A>A®B >A, T

AA > B AA>C AB>C
AA & A > B AA®B>C A0 A

Table 8: Derivation rules for intuitionistic linear logic

dereliction weakening contraction
AJA> B A> B AJIAIAD> B AJIA> B
AasB D) Aas W) "Atass (©) Atasie O

Table 9: Derivation rules for exponential
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In intuitionistic linear logic, if a sequent A > A is provable then all the resources
in A are used. This might be too strong: If the resources represents variables in a
program, one might want not to use all of them. We need a weaker logic: We will

replace the axiom rule
A A

with
AJA> A

In other words, a element can be discarded even if it is not of the form !A. The logic
becomes the affine intuitionistic linear logic, or AILL. This fits better our needs as
computer scientists. Indeed we want to be able to create a function that will not use
its argument. This fragment is therefore the one on which the type system of the
language we develop is based: we are able to state whether or not an element can be

duplicated, but we may forget any variable we wish to.



Chapter 5

The quantum lambda-calculus:

Terms

5.1 Quantum States

We now turn to the question of defining a lambda-calculus for quantum computation
with classical control.

We would like to extend the lambda calculus with the ability to manipulate quan-
tum data. We first need a syntax to express quantum states in the lambda calculus.

In simple cases, we might simply insert quantum states into a lambda term, such as
Az.(a]0) + B|1)).

However, in the general case, such a syntax is insufficient. Consider for instance the

lambda term
(Ay.Af.fpy)(q),

where p and ¢ are quantum bits which are jointly in the entangled state |[pg) =
«|00) + B|11). Such a state cannot be represented locally by replacing p and ¢ with
some constant expressions of type qubit. The non-local nature of quantum states thus
forces us to introduce a level of indirection into the representation of a state. Thus, to
represent a program, we should have a lambda-term M to encode the operations, but

also an exterior n-qubit state ) to store the quantum data of the program. Further,

29
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to link both parts, we need a third element, which is a function L from FV (M) to
{0,...,n — 1}, such that if L(z) = i, the variable x represents the i-th qubit in Q.

We also provide several built-in operations for quantum bits. The operator new
represents a function that takes a bit (0 or 1) and allocates a new qubit of the
corresponding value. We also need to be able to act on qubits via unitary operations;
thus, we will assume a given set U' of unitary gates. For simplicity we first consider
our language without tuples so we will restrict ourselves to unary quantum gates for
now; tuples and n-ary gates will be considered in Chapter 8.

In the following examples, we will often use the Hadamard gate H, which we

assume to be an element of U':

gL (1
IRV A

Finally, we equip the language with an operation meas, which takes a quantum bit,
performs a measurement, and returns the classical bit 0 or 1 which is the result of the
measurement. Of course, the outcome of this operation is probabilistic. If U ranges

over U' and x over Vi, we define a term by the following:

RawTerm M,N,P := =z
| MN

| Az M

| if (M;N;P)
| 01

| meas

|

|

new

U

Note that compare to the lambda-calculus from Chapter 3, we have removed
pairing, unit and the let operator. These will be re-introduced in Chapter 8.
As usual, terms are identified up to a-equivalence. In that sense we will write

\r.x = \y.y.
Definition 5.1.1 A quantum state is a triple

[Q? L7 M]
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where
e () is a normalized vector of @77 C?, for some n > 0
e M is a lambda-term,

e L is a function from W to {0,...,n — 1}, where FV(M) C W C Viepp. L is

also called the linking function.

We denote the set of quantum states by S. If n = 0, then we denote the trivial
state vector Q =1 € C by @ = |).

A useful subset of S is the subspace V of value states:
V={ [@Q L V]eS | Visavalue }

Here, a value is defined to be a constant, a variable or a lambda-abstraction as in
Chapter 3.
The notion of a-equivalence extends naturally to quantum states, for instance,
the states
[11),{x — 0}, Ay.z] and [|1),{z — 0}, \y.Z]

are equivalent. More formally, the a-equivalence on quantum states is the smallest
equivalence relation such that if v € FV(M) and z ¢ FV (M), then

Q,LU{x— i}, M]=,[Q,LU{z i}, M[z/x]].

We will work under this equivalence when speaking of quantum states.

Convention 5.1.2
In order to simplify the notation, we will often use the following trick: we use p;

to denote the free variable = such that L(xz) =i. A quantum state is abbreviated by

@, M)

with M" = M{[p;, /1] ... [pi, /xy] if the domain of L is {x1,...,x,}, where i, = L(xy).
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Reduction of the quantum state. We should now address the question of how a
quantum state should be reduced. One restriction is that it is forbidden to duplicate
a quantum bit, due to the no-cloning property of quantum physics. Let us illustrate
this with an example, using a call-by-value reduction procedure. Let us define a
binary and operation in our language: and = A\zy. if (x; if (y; 1;0);0). Now consider

the following term:
(Az.and(meas(z)(meas(H x)))) (]0)).
Naively, we expect this to reduce to
and (meas(|0))) (meas(H |0))),

then to measure the right argument H |0), then the left argument which reduces to 0
with probability 1, and then apply the and function. We expect to obtain the result
0 with probability 1. Using the quantum state notation, let us reduce this term more

formally:
[0}, (Ax.and(meas(z))(meas(H z)) (po)]

—cpv[|0), and(meas(py)) (meas(H py))]

In the QRAM, applying H to a qubit is modifying the actual state of the qubit. Let
us reduce the right argument (H py):

HCBV[% (10) + [1)) , and(meas(po)) (meas(po)))-

Reducing the right argument again, we obtain 1 with probability 0.5, assuming that
the measurement is non-destructive. (Indeed, if we used destructive measurement,

the program would not even be well-defined, since we would have a py alone):
—cpv]|0), and(meas(po))(0)].
and with probability 0.5:

—copvl]|l), and(meas(po))(1)].
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This reduces to [|0), 0] with probability 0.5 and to [|1), 1] with probability 0.5. Clearly,
this is not the intended result.

The program is unpredictable due to the duplication of py,. The problem derives
from the fact that a value such as py does not represent a constant, as in the classical
lambda calculus, but rather it is a pointer into the quantum state. We never act on
po, we act on the value it points to. To ensure the predictability of programs, it is
necessary to disallow the duplication of terms that contain p;’s.

We will call an abstraction A\z.M linear if x appears at most once as a free variable
in M. We also say that M is linear in x in this case.

Another problem can occur: let us call plus the function which acts as the addition

modulo 2 on classical bits. We can easily construct such a function in our language:

plus = \zy. if (z; if (y; 0; 1); if (y; 15 0))
Consider the state
[ ), (Azx.plus x z)(meas(H (new 0)))]

Now reduce this state using call-by-value reduction. Intuitively this shall reduce to:

—opv[|0), (Az.plus x z)(meas(H py))]

—>C’BV[L(|0> + (1)), (\z.plus = x)(meas pp)]

V2

and then with probability 0.5:
[ 1), (Aa-plus 2 2)(0)] or [ ), (Az.plus @ )(1)]

[),plus 00] or []),plus11]

which evaluate both with probability 1 to [ |),0]
Had we reduced the same term under a call-by-name strategy, we would have

obtained in the first step
[ ), plus (meas(H (new 0))) (meas(H(new 0))))],

and then [ |),0 | with probability 0.5 and [ |),1 | with probability 0.5.
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Moreover, if we had mixed the call-by-value and call-by-name strategies, the pro-
gram could have led to an ill-defined result: reducing by call-by-value until

V2

2

[
and then changing to call-by-name, we would obtain in one step:

V2

[5-(10) +[1)), (plus (meas po) (meas po)],

(10) +11)), (Az.plus x z)(meas po)]

which is not a valid program since there are 2 occurrences of py.
In other words, it does not make sense to speak of a general S-reduction procedure
for the whole quantum state. It is necessary to choose a reduction strategy before

writing programs.

5.2 Probabilistic reduction systems

Definition 5.2.1 We define a probabilistic reduction system as a tuple (X, U, R, prob)
where X is a set of states, U C X is a subset of value states, R C (X \U) x X is
a set of reductions, and prob : R — [0, 1] is a probability function, where [0, 1] is the

real unit interval. Moreover, we impose the following conditions:
e Forany x € X, R, = { 2'| (z,2') € R } is finite.
® > ep, prob(z,a’) <1
We call prob the one-step reduction, and we use the following notation:
r—p,y when prob(z,y)=rp

Let us extend prob to the n-step reduction:

0 if
prot’(z,y) = ey
1 if z=y
) prob(z,y) if (z,y) €R
prob(z,y) =
0 else

prob" (z,y) = 3.cp, prob(z, z)prob®(z,y)
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We use the following notation:
x—yy when prob"(x,y) =p

We say that y is reachable in one step with non-zero probability from z, denoted
T —so y when z —, y with p > 0. We say that y is reachable with non-zero
probability from x, denoted x — "~ y when there exists n such that x —7 y with
p > 0.

We can then compute the probability to reach v € U from x: It is a function from
X x U to R defined by:

proby (z,u) = Zprob”(x, u)
n=0

The total probability for reaching U from z is:

proby (z) = Z mebn(xa u)

n=0 uelU

On the other hand, there is also the probability to diverge from x, or never reaching

anything. This value is:

proby(x) = nh%rrolc> Zprob (x,y)
yeX

Lemma 5.2.2 For all x € X, proby () + probs(z) < 1.
We define the error probability of x to be the number
probe., (x) = 1 — proby(x) — proby (x)
Definition 5.2.3 We can define a notion of equivalence in X:

proby (z,u) = proby(y, u)

r~y it YueU
proby(x) = prob.,(y)
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Definition 5.2.4 In addition to the notion of reachability with non-zero probability,
there is also a weaker notion of reachability, given by R: We will say that y is reachable

from z if xRy. By the properties of prob,
r—>soy implies x~y
with x ~» y for £ Ry. Let us denote by —* the relation such that
x~"y iff In zR"y
with R" defined as the n-th composition of R. Similarly,

r—"Spy implies x~%y

Consistent states and error-states. In a probabilistic reduction system, a state

x is called an error-state if x ¢ U and

Z prob(z,z') < 1

r'eX

An element z € X is consistent if there is no error-state e such that z ~~* ¢
Lemma 5.2.5 If © is consistent, then probe..(x) = 0.

However, the converse is false: Define
e X =1{0,1,2}
o U =1{2}
e prob and R are defined by

OR0O and O —050
OR1 and 0—¢1
0R2 and O —05 2

Here (X, U, R, prob) is a probabilistic reduction system. 1 is an error state, so 0 is

not consistent but probe,,(x) = 0.
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Remark 5.2.6 We need the weaker notion of reachability x ~»* y, in addition to
reachability with non-zero probability x — <"y, because a null probability of getting
a certain result is not an absolute warranty of its impossibility. In the QRAM, suppose
we have a qubit in state |0). Measuring it cannot theoretically yield the value 1,
but in practice, this might happen with small probability, due to imprecision of the
physical operations and decoherence. What will happen if we measure this qubit
and get 17 We need to be sure that even in this case the program will not crash.
Hence we separate in a sense the null probability of getting a certain result, and the

computational impossibility.

5.3 Quantum reduction

We need a deterministic procedure to choose which redex to reduce. Let us analyze
a call by value procedure, since this is the most intuitive procedure. Note that the

reduction itself is probabilistic, but the choice of redex is deterministic.

Call-by-value reduction. We define a probabilistic call-by-value reduction proce-
dure in Table 10. We write M —cpgy,N if M reduces to N with probability p, or
M —, N for short. As said before, the reduction in the classical part of the calculus
is the usual one. Recall that we write [(), M'] as an abbreviation for a quantum state
(@, L, M] by Convention 5.1 on page 61.

Discussion. In the rule (meas), if Q@ = «|Qy) + 5|Q1) is normalized with

Qo) = 3=, ciley) @ |0) @ [47),

Q1) =32 Bilg) ® 11) @ [),
and |0) and |1) being the i-th qubit, we write gy = |a|? and p; = |3]?. In the rule
(new), @ is in a space of dimension 2". In the rule (U), if @ is in a space of dimension
2" let Q' =([; QU ® I,—;—1)(Q). In any case, V is a value.

A weaker relation. We define a weaker relation ~». This relation models the

transformations that can happen due to decoherence and imprecision of physical
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(Q, D M)V —, [Q, M[V/z]] )

(| Qo) + B|Q1), meas pi] —u, [|Qo), 0] (meas)

(| Qo) + B|Q1), meas pi] —,, [|Q1), 1] (meas)

(@, new 0] —1 [Q @ ]0), py] (newy)
[Q, new 1] —1 [Q ® |1), pn] (new)

@, U p] —1 @ p;] (V)

— (@, V']

N]
@, MN] 1@, MN7] (congy)
(Q, M] —, [Q', M"]
[Q, MV] —, [, M'V] (congs)

@, if (0; M; N)] —1 [Q, N] (ifo)
Q. (1; M; N)] —1 [Q, M) (1)

@, Pl —, @, P
Q. if (P; M N)) —, (@, if (P M N)] (i)

Table 10: Quantum call-by-value reduction

68
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operations. We define [Q, M] ~* [Q', M'] is [Q, M] —* p[Q', M'], even when p = 0,

plus the additional rule, if ) and @' are in the same vector space:
[Q, M] ~ [Q', M]

Lemma 5.3.1 Let prob be the function such that prob(z,y) = p if xt —, y and 0
else. If x,y € S (S,V,~,prob) is a probabilistic reduction system. O]

Evidently, this probabilistic reduction system has error states, for example,

@, H(A\x.x)].

Such error states correspond to run-time errors. In the next chapter, we introduce a

type system designed to rule out such error states.



Chapter 6

The quantum lambda-calculus:

Types

As we saw in Chapter 3, a type system is a powerful tool to prove the good behavior
a program during the reduction. In our language, there are two class of expressions:
Those which can be duplicated, such as for example [|), Az.z], and those who cannot,
for example [|0),po]. A suitable type system would take this constraint in account.
As seen in Chapter 4, the linear logic is a resource sensitive logic. Let us base our
type system on this logic. A well-typed term M:!A means that M can be duplicated.
We need also some type constants. In Chapter 3 there was only one constant type
needed, namely bit. In this language, we need bit, but also a type constant gbit to
be able to manipulate qubits.

A difference with the simply-typed lambda-calculus of Chapter 3 is the following:
A well-typed term M of type !A can be regarded as non-duplicable. In particular, if
x is a duplicable variable, it can appear in a term which will use x only once. The
notion we need to add is the notion of subtyping, noted <.. A << B means that if M|[z]
is typable when z is of type A, then M is also typable when x is of type B.

70
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A< B
a<a ) SR D) g ()
A<!B V Al—oB<A—B

Table 11: Subtyping relation: First set of rules

6.1 Subtyping

Let us define a type system. We are going to define it together with an subtyping
relation <.. We need constant types and types for abstractions (the functions). More-
over, we need a notion of duplicability of term. We want to be able to say whether

or not a term can be duplicated. For this, we use the notation of linear logic. Let us

define:
qType A,B = «

| (A—B)
where « ranges over a set of type constants, X ranges over a countable set of type
variables, and A — B stand for “function with argument of type A which returns a
result of type B”. We want at least two type constants, namely bit and ¢bit. The

“p

notation is a flag to state that the typed term is duplicable. We will call a type

“exponential” if it is written “lA”.

Notation. If n > 0, the notation (n)(A) stands for

m. 1A
Y
n times

Let us define a subtyping relation <: on this type system.
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Lemma 6.1.1 For any type A and B, if A< B and (m = 0)V (n > 1), then
(n)(A) < (m)(B).
Proof. By induction on m:

e If m = 0: let us show by induction that for all n integer, (n)(A) < B

— If n =0, by hypothesis A < B.

— If it is true for n, we have:
. (ind.hyp.)

(n)(4) < B
mrna<p P

e m > (0: n > 1 by hypothesis, and so:
. (ind.hyp.)
(n)(A) < (m)(B)

; ()
(n)(A) < (m +1)(B)

OJ
Notice that one can rewrite types using the notation:
qType A, B = (n)(a)
| () (X), (n)(Y)...
| (n)(A—B)
with n € N.

The rules can be re-written:

The two sets of rules are equivalent.

Proof that rules on Table 12 implies rules on Table 11
(var) Follows directly from Lemma 6.1.1.
(a) Follows directly from Lemma 6.1.1.

(—o2) We know that A << A’ and B < B'. So by (—o) we have A’ — B < A— B'. And

by Lemma 6.1.1 we have obtained the desired result.

O
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Table 12: Subtyping relation: Second set of rules

Proof that rules on Table 11 implies rules on Table 12 By induction on the
proof that A < B:

e If the last rule is (var) or (az), then use it also in the new proof.
e If the last rule is (—o), use (—oy), with m =n = 0.

e If the last rule is (!) or (D), then the proof will have a sequence of these two

rules, up to either (var) or (ax), or (—o).
(var) A = (n)(X) and B = (m)(X) for X some type variable, and m = 0 or
n > 1. We can concatenate this sequence with the rule (vary).

(ax) A= (n)(e;) and B = (m)(c;) with a; < and n > 1. We can concatenate

this sequence with the rule («).

(—0) A= (n) (A1 —o AQ) and B = (m) (Bl —o Bg) with A2 < BQ, B; < A1 and

m =0 or n > 1. We can concatenate this sequence with the rule (—os).

OJ
Lemma 6.1.2 A < B has a unique derivation within the rules from Table 12. OO

Lemma 6.1.3 (¢T'ype, <) is reflexive and transitive.
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Proof. By induction using the rules from Table 12, and the transitivity of the

implication in the equivalence:

We can define an equivalence relation = by
A=B iff (A<B and B<A)
Lemma 6.1.4 (¢T'ype/ =, <) is a poset. [
Lemma 6.1.5 If A<!B, then there exists C such that A =!C.

Proof. Using the first set of rules, A<!B can only come from (D) or (!). In both
cases, A is of the form !C. I

6.2 Typing rules

We need to define what it means for a quantum state [(), L, M| to be typable. It turns
out that the typing does not depend on () and L, but only on M. Now, given a term
M, we need to be able to say whether or not it is typable. As usual, we introduce
typing judgments to deal with terms that may have free variables. Note that the free
variables of M which are in the domain of L have to be of type ¢bit.

A quantum typing judgment is a tuple

A>M:B

where M is a term, B is a ¢I'ype, and A is a typing context. As usual we denote
A by {@ : Ay,... 2, Ay}, with Ay = Ap(z;). If A = {z1:44,...2,:A4,}, we denote
IA = {x:1 Ay, Ll AL )
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For A and B in ¢qType:

The axioms: For ¢ a constant term,
A< B A. < B
A,x:ADx:B(axl) ADC:B(axQ)

For the if term,
DA Pobit Do) )ADM:A Iy /AN A

[T A if (P M;N): A (if)

The application:
Fl,'ADMA—OB FQ,'ADNA

[,I,,/A>MN: B (app)
The lambda, where x & |A[: If FV(M)n || = 0:
x:AA>M:B VA z: A> M : B

Ao ASB M TIAS M (n+1)(A—-B) M)

Table 13: Typing rules for the quantum lambda-calculus

Before we give the typing rules, we give the types for term constants Let us fix a

type assignment ¢ — A., from the set of constant terms to ¢7'ype:

( 0 — !bit
1 — !bit
new > !(bit —o gbit)
U — (gbit —o qbit)
| meas — !(gbit —! bit)

Remark 6.2.1 we set new :!(bit —o gbit). We could also have put !bit in place of
bit, since we want a bit to be always duplicable. However, this will be a corollary of

the typing rules, and we therefore put the most general type for the constant.

The rules for constructing valid quantum typing judgments are shown in Table 13.

We will say that a quantum state [Q, L, M] is typable if there exists a type A such
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that
x1:qbit, ... x,: qgbit >M:A

is valid, with {z;...z,} to be the domain of Q).

6.3 Examples

First let’s illustrate the lambda-rules. Consider the following state:
), \x.H (new z)].

This is a function fed with an argument x, supposed to be a bit, which returns a

qubit equal to H|z). One can guess a type for the lambda-term:
bit —o qbit
If the term is well-typed, then the following typing judgment is derivable:
>Az.H (new x): bit —o qbit .

Indeed, a typing derivation is:

I(bit —o qbit) < bit —o qbit bit < bit
> new : bit —o qbit (c) x: bit >x: bit (z)
x: bit > (new x): gbit

(A1)

[(gbit —o gbit) < gbit —o qbit
>H': gbit —o qbit

(c) (app)

x: bit >H (new x): gbit
>Az.H (new x):(bit —o qbit).

(app)

Remark that in this example, the function is linear in x. Even if a bit is always
duplicable, we don’t need this feature in this term. This is expressed by the absence
of exponential on the argument bit. Remark that !(bit — gbit) is also a valid type for
this term: since the context is empty, one can apply the typing rule (\;). Indeed, we
can duplicate as needed the function: it is already a value, and there is no reference
to any pre-existing qubit.

However sometimes a function can be non-duplicable. Consider the quantum

state:
[~75(10) + 1)), {2 = 0}, Ay.a]
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This is a well-defined quantum state, but the function is non-duplicable. The variable
x free in the lambda-term is a pointer to the first qubit in the QRAM. This should
disallow us to duplicate the term. Indeed, the typing judgment

x: qbit > y.x: A —o qbit

is valid with typing derivation

(z)
(A1)

x:qbit,y:A> x: A —o qbit
x: gbit > \y.x: A —o qbit,

but
x: qbit >Ay.x:1(A —o gbit)

is not: the variable z is free in the term but appear to be non-duplicable in the
context: the rule (\y) cannot be applied.

Since the reduction strategy is call-by-value, a term is duplicable if and only if
its value is duplicable. A term is always reduced to a value before any possible
duplication. As an example, consider the state [|), (new 1)]. This state does not
contain any non-duplicable element, but it reduces in one step to [|1), po]. And as a
matter of fact, if it was duplicable, the typing tree would have been:

[(bit —o qbit) < bit —o! qbit 1 pit < bit
> new : bit —o! qbit >1: bit
> new 1:! gbit .

But !(bit —o gbit) <: bit —o! gbit is not derivable, since g¢bit is not a subtype of ! gbit.

However, the state [|0), {z — 0}, meas x| is duplicable, even if a qubit appears to
be embedded inside the lambda-term. This state reduces in one step to [|0), {x —
0}, 0], and «: gbit >1:! bit is perfectly derivable, from the rule for constants.

Let’s consider a higher-order term:
Avy.x(zy).

This is a function of two arguments which is not linear in x. It can be typed in the
following way:
>Azy.x(zy):(A — A)—ol(A — A).
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The argument x of the function has to be duplicable. For example the term
(Azy.x(ay))H
is typable. A valid typing judgment is
>(Azy.x(zy))H:!(gbit —o gbit).
The typing judgment
x: qbit > (Azy.x(xy)) Ay.a: qbit —o ¢bit

is not, however, since A\y.x is not duplicable.
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Chapter 7

Properties of quantum typing

judgments

7.1 Preliminary lemmas
Lemma 7.1.1 Ifx ¢ FV (M),
Ax:A> M : B implies A>M: B.

Proof. We prove this by structural induction on the proof A, x:A> M : B, as we
did it in Chapter 3, Lemma 3.2.1. [

Lemma 7.1.2 If A is in ¢Type,
A>M:A mplies T,A> M: A
Proof. By induction on the size on the proof of Ap> M : A. [J
Definition 7.1.3 We extend the subtyping relation to contexts by:
A< A" iff [A]=|A] and Va e |A] Ap(z) < A(z).

Note that this relation is reflexive and transitive.
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Lemma 7.1.4 If the typing judgement A> N : A s valid and if ' < A and A < B,

then

I'>N:B

18 also valid.

Proof. By induction on the structure of N:

If N is a constant term, we get the result by the axiom rule.

If N is a variable z, then Af(z) = A', with A’ < A. If A < B, by transitivity,
A'< BT < A so since  belongs to |A|, x € |I'|, and I'f(x) < A’. By transitivity
I'f(x) < B is true. Hence, by the (az) rule,

I'>z:B
is verified.

If N=MP, A> N : A comes from

ALIBS>M:C—A ALID>P:C
ALAL D> MP: A,

(app)

with the split A = (A}, A}, 1®). Since I' < A, T splits in (I}, '}, V) such that
< Al
ro< A
v < o
Since A < B, C — A < (' —o B. So by induction hypothesis:
MW > M:C —o B and
LW > P:C.

Applying (app) we get
T, 10> MP: B,

which is exactly
I'>MP: B.

And we get the result.
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e If N =if(M;P;Q), the idea is the same as for the product: we have to cut A
and I in pieces and to apply the induction hypothesis. Then apply again the

law (if).

e If N = Az.M then only 2 rules can apply: (\) or (\3). In both cases, A =
(n)(C' —o D). Since A < B, from the reversibility of the set (2) of subtyping
rules, B is of the form (m)(E — F), m=0orn >1, E<Cand D < F. Let

us study the 2 cases:

(A1): n=0,s0 m =0, and the rule says:

Az:C>M:D )
A .M :C—D. !

Then since ' < A and F < C,
T,z E) < (Ayz: ).
By induction hypothesis we get
Ix: E> M:F.

Applying (A1) we have the result.
(A2): n > 1. The rule is:

AL, Ag,z:C>M:D
A1, Ay > Ax.M : (n)(C — D),

(A2)

where A = (1A1,Ay), and |Ay| N FV (M) = 0. Let us split I' in (', T'y),
with |I'1| = |Aq] and [I'y| = |Ag|. For all z in |I'y|, I'y j(2) <!Ay (2). From
Lemma 6.1.5, I'; y(z) is banged. Thus I'; can be re-written as !I';, and we

have
(!1—‘1,1—‘2,.7/' . E) < (!Al,AQ,LL’ : C),

Ay, Ag,x: C'>M: D,
D < F.
Applying the induction hypothesis,

Ty, Ty,x: E> M : F.
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Since |Iy| = |Ag], T2 N FV (M) = 0. So either (Ay) or (A;) can apply. In
either case,
Ty, Ty, > Az M : (m)(E —o F).

OJ
Lemma 7.1.5 If V is a value such that
FAD>V:IA

Then
Ve e FV(V) 3U € qType Ag(x) =!U.

Proof.

e [f V is a constant ¢: The term is closed, hence by vacuity we have the result.

e If V= \x.M, the only rule that applies is (\3), and A splits into (A, !A,) with
FV(M)N|A{| = 0. So every free variable y except maybe x in M is exponential.
Since FV(Az.M) = (FV (M) \ {x}), the Lemma is also true in this case.

O

Lemma 7.1.6 For A and B qType, and V a value, if ATy, : A> M : B and
ATy >V 2 A are valid, then

Iy, Ty 1A M[V/z): B
s valid.
Proof. Let w be a proof for
ATy, z: A> M : B.

We prove it by structural induction on w. Let !ATy >V : A be a valid typing
judgment.

e If w is an axiom, there are three cases.
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1) We can have M =y, y # x. Then y € [!1A, Iy, with (1A, T),(y) = A
A" < B by the axiom rule. y € |I';, 'y, !A| then

Fl,FQ,!ADyZB

is a result of (ax;). Since M|[V/z]| =y, the lemma is verified.
2) We can have M = x. Then A < B by the hypothesis of (az;). By
Lemma 7.1.2, since !A, 'y >V : A we get that
Fl,FQ, AV A
By Lemma 7.1.4,
Fl,FQ, 'A>V :B.
And since M[V/x] =V, the lemma is verified.

3) Finally, M can be a constant: M = ¢. So A. < B. (axy) says that
Fl,FQ,!ADCZB
is also true. Since M[V /x| = ¢ = M. we have also the result.

e Else, if M = \y.P. Since M is a-equivalent to Az.P[z/y|, z a fresh variable,
we can suppose without lost of generality that y # z, y & |I'1], ¥ & |I'2| and
y & |Al. And so M[V/x] = \y.P[V/x]. M is a lambda-abstraction, so the first
rule to apply is:
T
x:ATy!IAy:C>P:B )
z: ATy, IAD> Ay.P: (n)(C — B).

for some n integer: if n = 0, we apply (), else we apply (As)

n=0) Then we apply (A;). By induction hypothesis, the lemma is true for 7.
Then we have:
I, Ty 1A y: C > PV /2] B.
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And by applying the (A1) rule,
[, 0o !A> A\y.PlV/z]|:C — B
and thus
[, 1A > M[V/ZE] (' — B,
and the lemma is verified
n > 0) Then we apply (A\y): If x is a free variable of P, then A is exponential by
the (\y) rule, and applying the induction hypothesis,
I, Do !AJy: C > PlV/2) B
is valid. Let us write
(P - (Fl, 1—‘2, 'A)
Since A is exponential, by Lemma 7.1.5, for all z in FV(V), ®;(2) is

exponential. By the (\y) rule, any free variable z of P is exponential. Since
FV(P[V/x]) = FV(V)U (FV(P) \ {z}), one can split ® into (1P, P,),
with |®,| = FV(P[V/z]). Then the hypothesis for rule (\y) is verified,

and we can apply it:
Iy, Do A > Ay P[V/z] 2 (n)(C — B),

and the lemma is verified.
If « is not a free variable of P, then the substitution let the term unchanged,
and we only add to the context some variables that are not free in P using

Lemma 7.1.2: we can still apply (Ag), and get the result.

e or if M = PR.
(T, 1A,z = A) splits in ([yy, oo, 'A") with the rule:
& &
ori T A > PR: B, (“PP)

and

n

61 :FQ]_,!A’ > P: C—OB,
n

52 :FQQ, IA! >R:C.
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There are 3 cases:

1) x can be element of |!A’|. The A =!A" and (z :!A") is both in & and &.
By induction hypothesis, if we split !A" in (IA” 2 :1A"), we can conclude
that

[y, Do, A" > P[V /2] : C — B and

Fl; F227 !A” > R[V/.CU] :C.

A is exponential, so by Lemma 7.1.5, I'y splits in 2 parts: (!T'11,12) with
FV(V)N |2 = 0. Since no free variable of PR is in |I';|, and since
FV(P[V/z]) = (FV(P)\ {z}) U FV(V), we have

FV(P[V/z]) N ||
= FV(R[V/z]) N |
= 0.

By Lemma 7.1.1, one can then find a proof for
!FH, Fgl, A" > P[V/.ZE] :C — B

and
!FH, FQQ, !A" > R[V/JI] :C.

Then applying (app) we get
Ty, Doy, Doo, A" > P[V /2] R[V /2] : B.
Applying Lemma 7.1.2, and since (PR)[V/x] = P[V/x]|R[V/x], we get:
[y, Doy, oo, A" > (PR)[V /2] : B.
And renaming the context, since
(To, Az A) = (Tg1, Do, A" 2 1 A),
we have what we want:

Fl,Fg, TA > (PR)[V/CE] . B.
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2) z can be element of |'y;|. That means that x is only free in P. In this
case, R[V /x| = R. In this case, (z : A) occurs only in &;. We apply the

induction hypothesis on 77 and get
ry, 0 1A > P[V/2]: C — B,

where I'y) = (I'yy, z : A). Applying (app) we get the result.

3) If x is element of |I'y|, the process is the same as in the previous case:
That means that x is only free variable of R. In this case, P[V/z] = P. In
this case, x : A occur only in (&). We apply the induction hypothesis on
Ty and get

I, IA > R[V/z] : C,

where I'yy = (I, x : A). Applying (app) we get the result.
e at last, if M = if (P; N; R), we apply the same cases as above.
O
Corollary 7.1.7 If
o ')Az :A> M : B,
o ')AV :(7)A,
then T'y, Ty, !A > M[V/x] : B.

Proof. From Lemma 7.1.6 and Lemma 7.1.4. [

7.2 Subject reduction

Theorem 7.2.1 If A > M:U is valid and [Q), L, M| ~* [Q', L', M'| then A" > M":U
is valid, where A" = A xy: gbit, ... xy: gbit and |L'|\ |L| = {z1, ...z, }.
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Proof We are going to restrict the study to call-by-value, it extends easily to ~-.
Since it is a relation defined by induction, we prove it by induction on the derivation

of the reduction.
e For the rule
[Q, A\e. M)V] —1 [Q, M[V/x]].
The typing judgment ® > (Az.M)V : B is derived by the typing tree

IATg,z:A> M : B
IANTZWV:A IATy> A Xe.M:A—oB
IA,T,,Ty > (A\e. M)V : B,

when @ splits into (!A, 'y, T'y). Using Lemma 7.1.7, since
AT >V:A and A Tgy,z:A> M : B,
the typing tree A, T'y, Io> M[V/x]: B is valid. the theorem is true, with L = L'.

e The rules for meas are

[a|Q0> + 6|Q1>7 meas pi] —>u0 [|Q0>7O]7

[@|Qo) + B|Q1), meas pi] —u, [|@1),1].

We study the first case, the second is similar. If [',!A x : ¢bit > meas x : B is
valid it must come from:
(gbit —o bit) < A — B (az) gbit <A (az1)
VA > meas: A— B @ Do IA z: gbit>x 2 A (axl)
[VIA, x 2 gbit > meas x : B, app

with I' = (Fl, 1—‘2)

From the subtyping rule (—og), bit <B and A < gtype. Hence A = ¢bit and
B = bit, and I';,; A > 0: bit is a valid typing judgment. Using Lemma 7.1.2,
[, 1A, x: gbit >0: bit is also valid: The theorem is true in this case.
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e The rules for new are, if () is in a space of dimension 2",

(@, new 0] —1 [Q ® [0), pyl,

(@, new 1] —1 [Q @ 1), py]-
We study the first case, the second is similar.
If I' > new 0:B is valid it comes from

[(bit —o qbit) < A— B Lbit <A
[, A new:A— B T'y,!AD>0:A (app)
T, 05 A > new0:B, app

for some splitting I' = (I'1, [y, !A). Thus ¢bit <B, and then B = gbit. The
state [Q ® [0),p,] is [@ ® |0), L U {x — n}z], if [Q,new 0] = [Q, L, new 0].
In particular one can choose a variable x which is not in |['|, by a-equivalence.
Then the typing judgment L', x: qbit >x: ¢bit is valid, and the theorem is true in

this case.
e The idea is the same for H.

e The first induction rule is:
N — N’

MN — MN'.

Since N and N’ have the same type by induction hypothesis, M N and M N’
have the same type by (app).

e The second induction rule is:

M — M
MV — M'V.

Since M and M' have the same type by induction hypothesis, MV and M'V
have the same type by (app).

e For the if rules, it follows directly from the typing rule.
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7.3 Progress theorem

Definition 7.3.1 A program is defined as a quantum state [@, L, M], where there
exists a type B such that, if A = {z: gbit | x € FV (M)},

A>M:B
is a valid quantum typing judgment.

Theorem 7.3.2 (Progress) Let [, M] be a typable program, then it is consistent,
as defined in Section 5.2 on page 66, i.e. it can never reduce to an error state. Hence

any closed well-typed term either converges to a value, or diverges.

Proof We prove that for all programs [@, M|, either it is a value, or there exists at
least one M’ such that M — M'. We do it by induction on the proof of validity of
the typing judgment. There are two cases. Either it is a value, in which case there is

nothing to do, or it is not, and the only 2 rules that apply are (app) and (if).

(app) In this case M = PQ.

A>P:B—oA A2[>Q2B
Ap> PQ: A,

with
A = (A, Ay) ={x: gbit |xr € FV(M)}.

Since FV (M) = FV(P)U FV(Q), and they are disjoint, the two typing judg-
ments we have are of the form required by the theorem. So by induction hy-
pothesis, either we can reduce (), and we are done, or it is a value. If it is a
value, let us study P: P is also either reducible, and then we are done, or it is
a value. If it is a value, then either it is an abstraction and PQ is reducible, or
it is a constant function, new, meas or H. Since the typing judgment is valid,

we are done, we can reduce in this last case.

(if) The if statement is similar: M = if (P; Q; R), and either we can reduce P, or

it is a value, so 0 or 1 and we can reduce M in @) or R.

So by induction any closed well-typed term is consistent. [J



Chapter 8

Extension of the language

8.1 Extended language

Let us extend the language with product types . Extended terms and types are
defined in Tables 14 and 15. In this case we allow the U™ to be unitary operations of

n qubits. For example if U? is a binary unitary gate, we use it as follows:
U? :1(gbit @ gbit —o qbit @ qbit)

We add to the previous definition a notion of pairs: as in simply-typed lambda-

calculus, we will denote a pair by
(M, Msy).
Tuples are defined as
RI A=A (A (A3...)...),
(My, ... M,y = (M, (M, (Ms...)...)).

Free variable, substitution We extend the notion of free variable and substitution

with the same definition as in Chapter 3, Tables 2 and 3.

Typing rules and reduction steps The typing rules to add are in Table 16. The

reduction procedure for these new terms is found in Table 17

90
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RawTerm M,N,P = ux

(M, N)
let (x,y)=M in N

3
)
=)
VA

Value U,V = =z
| .M
| 0
| 1
| meas
| new
| ur
|
|

?U; V)

Table 14: Extended terms
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qType A, B

= (n)(
| ()
| ()
| ()
| ()

The subtyping relation is extended to
(m=0)VvV(n=1)
m(1) < m)m) (7
(m=0)V(n>1) A <B, Ay<Bs
A8 4) < (m(Biob) (@

Table 15: Extended types

8.2 Cartesian product versus Tensor product

We use in our language the tensor product instead of a cartesian product. The reason
is the following: If we define our product as cartesian, we need 2 projections 7; and
o

m:AXxB— A
m:AX B— B

Then there has to be a bijection
(m (M), my(M)) < M

But such a projection cannot exists: if M is not duplicable, we do not have the right
to write (m (M), mo(M)). This is not linear in M.
Thus, we have to take care of the fact that we can have non-duplicable terms in

a tuple. Let us take an example:

%(I00> +111)), (Do, p1)

is a perfectly valid quantum state: in the term M = (pg,p;) we have stored two

qubits. Let us say we want to apply the H gate on p; and then the CNOT gate on
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First let us define the type of the new term constants:
x = 1T
U — (@, qbit — @, ¢bit)

If A; and A, are not exponential,
!A, 1—‘]_ > M]_ . (TL + m)(A]_) 'A, 1—‘2 > M2 . (TL + l)(AQ)
ATy Ty > (M, My) - () (m)(A) @ (D(A) (D)

!A, Fl [>M(TL) (Al X Ag) 'A, 1—‘2, .CC]_Z(’I'L) (A]_), .7/'2:(”) (AQ)DNA
IA, Ty, Ty > let (21, 79) = M in N:A (©.E)

Table 16: Extended typing rules

both of them. The CNOT gate is:

0
0
0
1

o = O O

0
1
0
0

o O O =

Using projections m; and 7o, we would have to write this as:
CNOT(H(ﬂjM),ﬂ'QM>

and that is not a valid program since we are duplicating M. If we want to stay linear,
we have either to forget p; in doing 7y or to forget p, in doing 7;. So we cannot use
cartesian products to model all the programs we need.

With tensor product, the linearity is kept: we can retrieve information in both A

and B of a product A ® B in a linear manner using
let (x,y)=M in N,

as we do in Chapter 3.
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If V1, V5, are values,
(@, let (x1,29) = (V1, V2) in N] —1 [Q, N[Vi/x1, V2 /2]

One reduces a tuple from left to right:
@, My] — [Q', M]]
[Q, (M, Ma)] — [Q', (M7, M>)]
(Q, Ma] — [Q', M)
(@, (V1, My)] —, (@', (V1, My)]

Table 17: Extended call-by-value reduction

The above problem has the following solution:
let (z,y) = M in (CNOT ((Hz),y)

since linearity of the product’s elements is preserved.

Remark. We have obtained the structure for a monoidal category. Indeed we can
define linear functions:
c:A®B—oB®A
a:(A®B)®C —-A®(B®()
AMART —A
p:A—oART
as follows:
o= Ap.(let (z,y) =p in (y,z))
a = Ap.(let (z,y) =p in
let (z,t) =x in
(2, (t,y)))

A= p.(let (x,y)=p in x)
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p = Ax.(x,*)

And moreover, given
f:A—oB
g:C—oD
one can define
fRg:A®C —-oB®D
like this:
f@g=Ap(let (z,y) =p in{fx,gy))

8.3 Compatibility with the previous results
Lemma 8.3.1 All the previous lemmas still hold in the extended language.

Proof. the lemmas we need to prove are 7.1.1, 7.1.2, 7.1.4, 7.1.5, 7.1.6 and 7.1.7.
Lemmas 7.1.1 and 7.1.2 are completely similar to the ones in the background

chapter.

Proof of Lemma 7.1.4. We want to show that if Ap> N : A is valid and if [ < A
and A < B, then I' > N : B is also valid

We do it by induction on the structure of N. We have to check for the new cases.
If N = (M, M), then A > (M, My):(n)(A; ® Ay) comes from

!AI,AQ > M1 . (n)(Al) !Al,A?, > Mk . (n)(AQ)
!Al, AQ, Ag > <M1, M2> . (n)(A1 ® AQ)

®.1

Since I' < A, I' = (!Fl, FQ, Fg) with !F1<Z!A1, Iy < AQ and I's < Ag. There is
a bang on !I'; since II'y<!A;. Since A < B, B = (B4, By) with A, < B; and
Ay < By. Hence the induction hypothesis can be applied, and

!Fl, FQ > M]_ : (TL)(B]_) and !F]_, Fg > M2 . (TL)(BZ)

are valid. Applying (®.7), we obtain the result.
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If N = let (x1,29)=M in P, then the typing judgement comes from

!A]_, AQDM(TL)(Al (59 AQ) !A]_, Ag, .fL']_Z(TL)(Al), .7/'2:(”) (AQ)DNA ©.E
!Al,AQ,Ag > let <1‘1,1‘2> =M in P:A

Since I' < A, I'= (!Fla FQ, Fg) with !F]_<Z!A]_, FQ < AQ and Fg < Ag. There is a
bang on !IT'y since !T';<!A;. Applying induction hypothesis,

!Fl,FQDM:(n)(Al ®A2) and !Fl,Fg,l‘li(n)(Al),.%'2:(71)(A2)|>N:B
are valid. Applying (®.F) gives the result

If M = %, the proof is done similarly to the axioms already done.

Proof of Lemma 7.1.5. We want to prove that if V' is a value such that A>V :!1A
is valid then for all z in FV (V') there exists U in qType such that A¢(z) =!U.

The proof was started by structural induction on V.
If V =T, the term is closed. So by vacuity the result is true.

If V.= (W1, V) with V; and V; values, the typing tree starts with

ATy Vi (n+1)(A) AT Vo (n+1)(As)
!A, ry,I'h <V1, ‘/2> : (TL + 1)(A1 &® Ag)

®.1

By induction hypothesis,
FVv(V) N[y =FV (V)N Ty = 0.

Since FV ((V1,V3)) = FV (Vo) U FV(Vy), FV ((V1,V2)) = 0. And so the result is

also true in that case.

Proof of Lemma 7.1.6. We want to prove that for A and B elements of ¢Type
and V a value, if I ATy >V : Aand !A, Ty, : A> M : B are valid, then I';, 'y, A >
M[V/z] : B is valid.

The proof was done by induction on the typing tree of !A, 'y, z: A> M : B. We

have 3 cases to add:
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(®.I) is done as in the (app) case.
(®.F) is like combination of an application and an abstraction rule.

(%) is done as in the constant case.

Proof of Corollary 7.1.7. We want to prove that if I';,!A,x : A> M : B and
FQ, IAD>V: (T)A then Fl; 1—‘2, IA > M[V/.CU] : B

This is still a corollary from Lemma 7.1.6 and Lemma, 7.1.4.

U

Theorem 8.3.2 Subject reduction still holds.

Proof.
We have to check that the new structures added have rules that are compatible

with subject reduction.

e The rules for the pairing are just an extension of the application rules, so using

a similar method, it is working.

O
Theorem 8.3.3 The progress theorem still hold.

Proof. By inspection of the new rules. [

8.4 Examples

Example: implementing the Deutsch algorithm. The formalism of higher-
order functional programming language is adequate for writing the Deutsch’s algo-

rithm. Indeed it can be done in that way:

let Deutsch Uy =

let tens [ g (x,y) = (fz,qgy)
in let (x,y) =
(tens H (Az.x))(Us(H (new 0), H(new 1)))

mn meas T,
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in ML notations. Note that Uy is a variable that stands for a function from a two-
qubit state to a two-qubit state. And indeed the function Deutsch is a higher-order
function:

>Deutsch:!((gbit ® qbit —o qbit @ gbit) —o bit)
is a well-typed typing judgment. Note that Deutsch is duplicable, and that Uy does

not need to be duplicable, since it is used only once.

Example: implementing the teleportation procedure. We can embed each
quantum circuit part of the procedure in a function. There is a function EPR :

(T —o (gbit ® qbit)) that creates an entangled state, as in the step (1):
EPR = Ae. CNOT (H (new 0), new 0).

There is a function BellMeasure : !(gbit —o(gbit —o bit @ bit)) that takes two qubits,

rotates and measures them, as in steps (2) and (3):
BellMeasure = A\gy.A\q;.(let (z,y) = CNOT(q,q2) in (meas(Hzx), measy)

We also can define a function U : !(gbit —o(bit ® bit —o qbit)) that takes a qubit ¢ and

two bits x,y and returns U,,q, as in step (4):

U = M\g. Xz, y).if x then (if y then Uy1q else Uygq)
else (if y then Uyq else Uyq),

where U,, are defined as on page 16 when the measured qubits were z and y.
The teleportation procedure can be seen as the creation of two non-duplicable
functions f and ¢
f 1 qbit —o bit ® bit,
g : bit ® bit —o qbit,
such that f o g(x) = z for an arbitrary qubit . We can construct such a pair of

functions by the following code:

let (z,y)=EPR x
in let f = BellMeasure x
in let g =U y.
in ([, 9)-
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Note that, since f and g depend on the state of the qubits  and y, respectively, these
functions cannot be duplicated, which is reflected in the fact that the types of f and

“y

g do not contain a top-level



Chapter 9
Type inference algorithm

Up to now we have defined a quantum programming language, mixing quantum and
classical data types, together with a type system to certify the good behavior of
programs during reduction. However, a big problem is not solved: how can we say
whether or not a program is well-typed ? An algorithm that can solve such a problem

is called a type inference algorithm.

9.1 A first example

Our goal is to find an inference algorithm. One can try to base it on the one from
the simply-typed lambda-calculus from Chapter 3. Recall that one key-point in this
algorithm was, given a well-typed M, the existence of a most general typing judgment
A M : A such that each possible typing judgment would be an instance of A>M : A

However, in MAILL, such a type does not exists. Indeed, consider the following
example: let

M = \xy.xy

be a lambda term. Note that M is a well-typed closed term. Here are some valid
typing judgments:

>M:(U—-oY)— (U—-oV),

>M WU —-oV)—ol(U—-oV),

>M WU —-oV)— (U—V).

100
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The most general type W such that W = (U — V) —o (U — V) and TW =
(U— V) —o (U — V) for some substitutions o and 7 is X — Y. But

>M: X —oY

is not valid: the notion of substitution is therefore not sufficient to describe the
validity of a typing judgment.

On linear types, there is another natural ordering relation: the subtyping relation.
For example, (U — V) —o (U — V') is the greatest element smaller than all types
above, but

>M:(U—-oV)—l(U—-V)

is not a valid typing judgment. So there is no smallest type for this typing judgment
using the subtyping relation.

However, one can consider the exponential symbols as decorations on linear types,
as suggested by V. Danos, J.-B. Joinet and H. Schelling [7]. One can note that all
possible types of M are of the form (X —Y) —o (X —Y). If one replace —o with =,
this type gives a valid typing judgment »M : (X =Y )= (X=Y) in the simply-typed
lambda-calculus of Chapter 3. The type in quantum lambda-calculus is therefore a
decoration of a simple-type. We define these notions formally in the next section.

This work is similar to [7].

9.2 Syntactic Skeleton

We define the class of type skeletons by

Skel A,B ==
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where « ranges over the type constants and X over the type variables. We define the

typing-skeleton of A in ¢Type to be:

fn)(a) = «

f(n)(X) X
fn)(A—B) = TA=TB
fn)(A®B) = TAx'B

fn)(T) = T.

It corresponds to the structure of the type, or to erasing all “!”.

Lemma 9.2.1 IfU <V, then U =TV,

Proof. By induction on the derivation of U <: V' using set (2) of rules from page 72.
(vary) T(n)(X) = X = T(m)(X). Hence it is true in that case.

(a) The only type variables we have are bit and gbit, and they are not comparable
using the subtyping relation. So if a < 8, then a = . So if (n)(«a) < (m)(B),
then T(n)(e) = a = 8 =T(n)(8).

(—oo) If the derivation starts with

A<A B<B (m=0)Vv(n>1)
(n)(A" — B) < (m)(A — B),

by induction hypothesis, TA = TA’ and 'B = 'B’. Using the definition of the
skeleton, T(n)(A’ — B) = T(m)(4 — B').

(T) By definition of skeleton, f(n)(T) = f(m)(T).

(®) If the derivation starts with

(sz)V(nZl) A1<ZB1 A2<ZB2
(n) (A1 ® A2) < (m)(B1 ® By),

then by induction hypothesis,

TA]_ = TB]_ and TAQ == TBQ
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Using the definition of the skeleton,

f(n)(A1 @ A3) = T(m)(B1 @ By)

We extend the notion to contexts and typing judgment as follows:

T{.CU]_ZA]_,...,,THZAR} == {.CL']_ZTAl,...,l'nZTAn}
"(A>M:A) = (TAp M:TA).

If A M : Ais avalid typing judgment in the quantum lambda-calculus, the following
remark shows that (A > M : A) = TA > M : TA) is a valid typing judgment in the
skeleton lambda-calculus. The rules of the skeleton lambda-calculus are shown in
Table 18. They are equivalent to the rules of simply-typed lambda-calculus from
Table 7 in Chapter 3, modulo application of the weakening property. The reason
for this slight reformulation of the rules is so that the skeleton calculus is the exact
image of the quantum lambda-calculus under the skeleton operations, as shown in

the following remark:

Remark 9.2.2 If a typing judgment 7" is valid, then its skeleton admits a proof tree
constructed with the rules in Table 18. Such a proof tree is the exact image of the

typing tree of 7" by . [

Lemma 9.2.3

1. The weakening property is verified: if A > M : A is true, then A, I'> M : A 1is

also true.
2. If Njx:B> M : A with x ¢ FV (M) is true, then A > M : A is also true.

Proof. The proof is done by induction on the typing derivation of A M : A, as it

was for the quantum-typed case. [J

Lemma 9.2.4 Given a term M of the quantum lambda-calculus, A > M:A if and
only if Aw M:A
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Apc:TA,

Az :Apx: A

Ajx:Ap> M : B
A \e.M:A=B

AL, I'>bM:A=B A, I'>N:A
Al,AQ,FDMNIB

Fl,ADPbZt FQ,ADMIA FQ,ADNZA
[, T, A if(P;M;N): A

A,F1|>M11A1 A,F2>M21A2
A,Fl,FQ > <M1,M2> : A1 X A2

A,F1|>MIA1XA2 A,F2,$1:A1,x22A2[>NZA
ATy, Ty let (zq,29) = M in N : A

Table 18: Induced typing rules for skeleton

Proof. First note that the set of quantum lambda-terms is the set of the simply-

typed lambda-terms.

< Each rule of the simply-typed lambda-calculus is an instance of the corresponding

rule in skeleton lambda-calculus.

= Using the weakening property of Lemma 3.2.1, one can prove by induction on the
typing derivation of A > M:A that A » M:A is true.

U

Remark 9.2.5 Given a well-typed quantum term M, there exists a most general

typing judgment for z; : Xy ...z, : X, > M Y, |A| ={2y...2,}.
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Proof. Given the previous lemma, if I' » M : A is a most general typing judgment
forxy - Xy...x, : X;, » M : Y, a most general typing judgment for x; : X;...x, :
X,>M:YisI'>M:A O

Definition 9.2.6 Given A € Skel, one define a quantum type with the following

inductive definition:
*Y = X

.‘CY:OC
*(A=DB) = *4—o*B
*AxB) = *A@*B

Lemma 9.2.7 A =f%4
Proof. by induction on the derivation of *A4. O

We now turn to the question of how a skeleton type can be “decorated” with
exponentials to yield a quantum type. These decorations are going to be the heart of

the quantum type inference algorithm.

Definition 9.2.8 Given U € ¢Type and A € Skel, we define the decoration A
U € qType of A along U by

1) A% (n)(U) = (n)(A % U) where U is not banged,
2) (A=B)% (U—-V)=(AxU—oB3V),
3) AxB) > U®V)=A%UB+V),
and in all other cases,
4) A U=*A.

Lemma 9.2.9 If A € Skel and U,V € qType, then the following are true:

a) A% (n)(U) = (n)(A % V),

b) (A=B) (U—-V)=A%U—-BxV,
¢) AxB)+» URV)=AxU®B%V,
d If WU=A then AxU=1,

e) (A U)=A,

)

~

If U<V then Av-U<A%V.
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Proof.

a) U = (m)(V) with V not banged. Then (n)(U) = (m +n)(V).

b) and ¢) are the definition.

d) By induction on the derivation of A 9 U:

106

1) The formulais A % (n)(U), U not exponential. By definition, A ¢ (n)(U) =
(n)(A % U). By induction hypothesis, A 4 U = U. Then A % (n)(U) =

(n)(U).

2) The formula is (4 = B) & U — V with (U — V) = (A = B). From the
definition of the skeleton, TU = A and 'V = B. So by induction hypothesis
AvU=Uand B+ V =V.S0(A=B)% (U—-V)=(A»U—-B%

V)= (U—YV)

3) This case is similar, replacing —o with ® and = with x.

4) If A=1U then this case is reach only if A =U = o, T or X a type variable.

Then *A=U,and A+ U = U.

e) By induction on the derivation of A & U:

1) The formula is A 3+ (n)(U), U not exponential. Since A ¥ (n)(U)

(n)(A & U), "(A% (n)(U)) = T(A % U). By induction hypothesis, this

is equal to A.
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2) The formula is (A= B) & (U — V). By induction hypothesis,
(A U)=A and "(B9V)=B.

So (A U—-oBxV)=1(AU)=T(B+V)=A= B.
3) This case is similar, replacing —o with ® and = with x.
4) A3 U =*A. By Lemma 9.2.7, (A % U) = A.
/) By induction on the derivation of U < V.
(az) In this case, since « can only be bit or ¢bit, the rule is U < U. Then
A+ U =A% V. By reflexivity, AxU <A V.
(var) The rule is X < X. By reflexivity, A + X < A % X.

(T) is similar to the previous case.

(D) The rule is
U<V
U<V

By induction hypothesis, A & U < A & V. Applying (D), /(A ¢ U) <
A% V. From (a), (A U) = (A!U). Hence AU < A V.
(1) The rule is

U <V.
<!V

By induction hypothesis, A U <<A & V. From (a), (A U)<A T+ V.
Applying (1), (A % U)<!(A 9 V). And from (a), A U < A B!V,
(—) The rule is
V<U U<V’
U—-U<V—oV

By induction hypothesis, A & V <A & U and A & U < A+ V.
Applying (=), A3 U —-A > U <A+ VoA V. From (b),
A (U—oU)< A (V—oV')
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(®) The rule is
U<V U<V
UU <VeV

Using the same method as for the (—o) case, and from (c), one have A 3~
UU)<A+ (VeV)

The following lemma is the key to the quantum type inference algorithm:

Lemma 9.2.10 If M is well-typed in the quantum lambda-calculus with typing judg-
ment I' > M : U, then for any valid typing judgment A > M : A in simply-typed
lambda-calculus with |A| = |T|, the typing judgment A T > M : A% U is valid in
the quantum lambda-calculus and admits a proof which has for skeleton the proof of

Ap M: A.

Proof. By structural induction on the typing-tree of ' > M : U.

(¢) M = cand the typing judgment isI'>c¢ : U, A.<U. Any valid typing judgment
in simply typed A-calculus is of the form A > c:TA.. Since A, < U, TA, =TU.
Then from Lemma 9.2.9.d one can deduce that A, & U = U. And so the
Lemma is true in that case: A+ I'>c: U

(x) M = z and the typing judgment is ',z : U > x : V, with U < V. A typing
judgment in simply typed lambda-calculus is of the form A,z : Ap x : A. From
Lemma 9.2.9f, A: U< A+ V. Andthen AT, 2 : A+ Upbar: A Vis

valid in qType. And so the Lemma is true in this case.

(A1) M = Ax.N and the last rule of the typing derivation is

Dx:UD> M:V.
I'>Xe.M:U-—-oV

The typing tree in simply typed lambda-calculus starts with

Ax: A M : B.
Ap \e.M: A= B
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(app)

The induction hypothesis applies for I''x : U > M : V and A,z : A M : B.
We have:
AT, x2: AU M:Bs V.

One can apply ()\;), and from Lemma 9.2.9.b, we obtain

AT \e.M: (A= B) % (U—oV).

Given
Do, 'y, U > M:V

Lo, ITy > Ae.M:(n+1)(U—V)

with FV(Az.N) € |I'1| and

Ajx:A> M:B
A \v.M:A= B,

since |A| = |y, IT'|, one can split A in (A, Ay), with |A;| = |[|. By induction
hypothesis
AQ S 1—‘27A1 %!F]_,.T}ZA U M:BxV

is valid. From Lemma 9.2.9.a, A &=!I'; is of the form !I"|. The free variable of
Az.N are still in |I"}], and then (A) apply in place of (A;) in the previous case:
we obtain

AT aM:(A=B)% (n+1)(U—V).

M = NP and the typing tree starts with

!Fl,FQDN:U—OV !F]_,F3[>P:U
Ty, [y, I's> NP V

In simply typed lambda calculus the typing tree is:

ALAB>N:A=B ALA>P: A
A]_,AQ,A:;DNPZB

We have from the hypothesis that |A;, Ay, Ag| = |'I';, Iy, I's|. From the weak-

ening property of Lemma 9.2.3.1 we can find a proof tree starting with:

Al,AQ,A3I>NZA:B Al,Ag,A3|>PZA
A]_,AQ,A:;DNPZB




CHAPTER 9. TYPE INFERENCE ALGORITHM 110

(i)

The variable in I'; are not free in N, and the variable in 'y are not free in P.
Using the strength property of Lemma 9.2.3.2, one can remove these variables

to obtain
ALALDN:A=B ALAI>P:A

A,AL A, > NP: B :

with |AL| = |T';|. The induction hypothesis allows us to write that
Al D, AL Ty N (A= B) % (U—V)

and
AT, A - T3>P AU
are valid. Since (A= B) % (U —-V) =A% U —- B+ V and A} ! is of
the form !I'} using Lemma 9.2.9.a, we can apply the application rule and get
Al B0 A, Ty, A T3> NP: BV

and see that the lemma is verified in that case.

M = if (P; N; Q) and the typing tree starts with

!Fl,FQDPI bt !Fl,F3I>NIU !FI,F3|>QZU
!Fl,rg,rg > Zf(P, N, Q) U

In simply typed lambda calculus the typing tree is:

Ay Ay Pibit A Ass> N:A Ay, A Q:A
A17A27A3[>Zf(P7N7Q) A

Using the same trick as in the (app), one can rearrange the contexts to obtain

ALALS Prbit ALALS N:A AL AL QA
A AL Az > if (P N;Q) - A

with |AL| = |T';|. The induction hypothesis allows us to write that
Al w1, AL & Ty > P bit,

Al I, AL Ty > N:A U,
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O

and
Al DAL T3 >Q: AU

are valid. Since A} -} is of the form !I"] using Lemma 9.2.9.a, we can apply

the (if) rule and get
Al I, AL - Ty, Al Ty if (P N;Q): A U
and see that the lemma is verified in that case.

M = (N, P) and the typing tree starts with

Ty, Ty > N:(m +n)(U) Ty, Ts> P:(n+1)(V)
Ty, Dy, T5 > (N, P) : (n)((m)U) ® (1)(V))

In simply typed lambda calculus the typing tree is:

Al,AQDNIA A17A3[>PZB
Al,AQ,A3[><N,P>ZAXB

Using the same trick as in the (app), one can rearrange the contexts to obtain
AL AL > N:A ALAL > P:B
ALALAs> (N, P): AX B

with |AL| = |T';|. The induction hypothesis allows us to write that
Al 0L AL - T > N:A % (n+m)(U),

and
A'l %!Fl,Ag +I3>P:B% (n+1)(V)

are valid. Since A} 3!} is of the form !I'} using Lemma 9.2.9.a, we can apply

the (®) rule and get
Al B0, A Ty, Ay T3> (N,P): (Ax B)% (n)(UV)
and see that the lemma is verified in that case.

The proof for let is based on the same model as the ones above. The proof for

(%) is the same as the one for the constant terms.
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9.3 Template

We want to be able to say whether a given term is typable. Note that if M is not ty-
pable in simply typed lambda calculus the M is not quantum typable by Remark 9.2.
On the other hand, if M admits an intuitionistic typing judgment I' > M : A (with
typing derivation 7, say), then M is quantum typable if and only if M has a quantum
derivation whose skeleton is 7. Thus we can perform type inference in the quantum

lambda-calculus in two steps:
1. Find an intuitionistic typing derivation m, if any,
2. and find a decoration of 7 which is a valid quantum typing derivation, if possible.

Step (1) is already decidable, using Remark 9.2. In step (2), note that the set of
decorations of 7 is in general infinite, due to the presence of multiple exponentials of
the form (n)(N) for arbitrary n. However, as we show in the next section, it suffices
to consider the cases n = 0 and n = 1 making the search space for step (2) finite.

We define formally the template of a term M and a term variables set E' to be
the set

T(E,M)= { AD ]EWW: 4 Vvalid typing tree with Al =FE }

9.4 A subclass of ¢T'ype

We define a SqType to be a quantum type without repeated exponentials. Formally:

SType C,D = A
| A
AgType A = «
| X
| (C—D)
| (C®D)
|
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There is a canonical projection:
L qType — SqType

defined by the following, using the set of rules (2):

HA—B) = (4) — (B)
H(n+1)(A— B)) I(L(A) — L(B))
Ha) = «

H(n+1)(a)) la
HA®B) = (A)®(B)
Hn+1)(A® B)) '(L(A) @ L(B)))
HT) T
Hi+1)(T) = IT

We extend this function to typing judgments, proofs and type substitutions in a

canonical way. We define ¢, to be 0 if n =0, 1 else.
Lemma 9.4.1 For all A in qType, |A = A.

Proof. By structural induction on A, where ¢, = 0if n =0, 1 else:

from the set (2) of subtyping rules, and by induction hypothesis: |((n)(C — D)) =
(n)(C' — D) and [((n)(C ® D)) = (n)(C ® D), using the definition of subtyping. O

Lemma 9.4.2 Any given skeleton is the image by t of only a finite number of ele-

ments of SqType.

Proof. By structural induction on a skeleton A.

A is X, a or T. The only two possible ¢Type of such a skeleton are A and !A. Then

there is a finite number of them.
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A= B=C atypeU in S¢Type such that TU = A can only be of the form (¢)(V —W),
with V' being one of the finitely many SqType of skeleton B and W being one
of the finitely many SqType of skeleton C', and € being 0 or 1. So there are only
finitely many U satisfying this condition.

A =B ®C is similar to the = case, replacing — with ®.

O

Lemma 9.4.3 Given any valid typing judgment At>M : U in ¢Type with typing tree
w, the projection L(w) is a valid typing tree for the typing judgment A > M : LU. So
a term M s valid in qType if and only if there is a typing tree for it in the co-domain
of |.

Proof. Follows directly from Lemma 9.4.1 and Lemma 7.1.4. [

Theorem 9.4.4 There is a deterministic algorithm to check if a given term M 1s

valid:

e Find a typing deriwation for M. For example the one given by the type inference
algorithm of Chapter 3.

e There is only a finite number of possible decoration, and M is valid if and only

if one one find a valid proof tree for one of those decorations.

Now we have a deterministic algorithm to decide if a term M is well-typed or
not. However this algorithm is exponential in the size of the typing-tree of the most

general unifier.

9.5 A polynomial-time decision procedure

The naive application of the procedure from Theorem 9.4.4 yields a search space which
is finite, but exponential in the size of the intuitionistic typing derivation. However,

it is easy to organize the search in a more efficient way.
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Let xSqType be an extension of ¢Type:

zSqType VW == (p)(U),
zAqType U = X|a|V—oW |V W,
when p ranges over a countable set of variables, called flags.
Let II be a map from Skel to xSqType, defined recursively, where p is a fresh flag

at each step:
I1(X) (P)(X)
() (p)(c)
[I(A= B) (p)(I1(A) — I1(B))
I(Ax B) = (p)I1(A) ® I1(B))
One can canonically extend II to skeleton judgments and skeleton typing-proofs.
Let A be an 2.5¢Type, and let F' be the set of flags occurring in A. Given a function
7 from zSqType to SqType, we can define an SqType T(A) by:

If A is in zAqType

m((p(4) = (TpA
If VW are in zSqType
(X) = X
(@) = o
T(V—W) = 7(V)—r(W)
rVeW) = 7(V)or(W)

One can canonically extend 7 to the domain of II.

Given a skeleton typing tree, an inference algorithm needs only to place constraints
on 7 in order to obtain a valid typing tree in SqT'ype. Given a valid skeleton typing
judgment (A M : A) with its typing tree, one construct a set of constraints for 7

in the following manner:

(x) The typing tree of (A M : A) is

r1 A, s Ao A

IT outputs
x U, ...y Uy > 0 V
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The constraint for 7 is (it is fully explained in the proof of Lemma 9.5.1):

T(U;) < 1(V)

(¢) The typing tree of (A > M : A) is

Ay, xy s Ay e TA,

IT outputs
x:Uy,...xp U, >c: V.

The constraint for 7 is (it is fully explained in the proof of Lemma 9.5.1):

A< 1(V)

(A) The typing tree of (A > M:A) is

D W
A,z:C> N:D
A \e.N:C=D.

One must make matching the output of Il with the form
 11()
Al x:Up» NV
A" > \x.N:(p)(U — V).

If A" = {y1:(p1)(U1) ... yn:(pn)(Un)}, the constraints for 7 are the ones of the

previous call to II together with:
Yy, m(p)=1=7(p;) =1

(app) The typing tree of (A > M:A) is

oy
ALA > N:A=B AL A P:A
A]_,AQ,A?, > NP:B
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One must make matching the output of II with the form
: (wy) s 1T (wy)

ALAL Ni(p) (U — V) AL AL PU
A AL AL NPV

If Al = {y1:(p1)(U1) ... yn:(pn)(Un)}, the constraints for 7 are the ones of the

two previous calls to IT together with
7(p) =0
Yy, T(pi) =1
(if) The typing tree of (A M:A) is
D W : W D W

Az, A{BPibit Ao, AiQ:A Ay, A{>N:A
A17A27A3l> Zf(P’Q7N) : A

One must make matching the output of II with the form
H(wl) H(WQ) H(Wg
AL AP (p)(bit) AL ADQ:U AL AIBN:U
AL A Ay f(P5QN) U

If Al = {y1:(p1)(U1) ... yn:(pn)(Un)}, the constraints for 7 are the ones of the

three previous calls to II together with

7(p) =0
Yy, T(pi) =1
(x.I) The typing tree of (A > M:A) is
D Wy D Wo

AT > M i A ATy My Ay
A,Fl,FQ > <M1,M2> : A1 X A2
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One must make matching the output of II with the form
IT(wr) IT(w-)
AI, Fll > M1 . (O'Il)(Al) A,, FIZ > Mg . (O'é)(Ag)
AT, Ty > (M, Ma) : (p)((01)(Ar) x (02)(A2))

If A" = {y1:(p1)(U1) ... yn:(pn)(Uy)}, the constraints for 7 are the ones of the

two previous calls to II together with
vyl T(pZ) = ]-7
m(p)=1=7(0]) =1 and 7(p)=1=171(03) =1,

!

(o) =1=7(0]) =1 and 7(02)=1=17(03) =1.

(x.E) The typing tree of (A > M:A) is

- o
A,F]_|>M2A1XA2 A,Fg,xlel,xg:AQDN:A
A,Fl,rg > let <.T1,.CU2>:M in N:A

One must make matching the output of Il with the form
: (w:) - (wy)
AT M (p)(Ar x Ag) AL Dy, @2 (p)(Ar), 322 (p)(A2) > N = (p)(A)
AT T, o et (wy,x9)=M in N:(p)(A)

If A" = {y1:(p1)(U1) ... yn:(pn)(Uy)}, the constraints for 7 are the ones of the

two previous calls to Il together with
Yy, T(pi) =1,

Lemma 9.5.1 This algorithm is well-defined and given A> M : A a skeleton typing
gudgment, the set of T that satisfy the constraints is in 1 to 1 correspondence with the
set of quantum typing derivations, using SqType, whose images by t are (A M : A).

Moreover, the set of constraints for T are all of the form

T(p) = 1,
7(p) =0 or
T(p) =1=7(p) =1
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Proof. By induction on the typing-tree, any typing judgment (I' > M:U) using
SqType whose image by Tis (A> M : A) will give a map 7 such that 7I[I(A > M :
A) = (I' > M:U). On the converse, all the constraints placed for 7 are sufficient to
make the image valid, by inspection of the rules.

Finally, the only constraints that are not of the claimed form are the ones that
are for the variables and for the constants: 7(U) < 7(V') and A, < 7(V') But such a
constraint can be re-written, using this recursive procedure which is a translation of

the set (2) of subtyping rules on page 72:

() Since « is only bit and gbit, and since there is no subtyping relation between

them, the rule is 7((p)(«)) < 7((p')(«)) if and only if 7(p/) =1 =7(p) =1
(X) 7(() (X)) < () (X)) if and only if (/) = 1= () = 1

(=) 7((p)(U—V))<7((p") (U — V")) if and only if 7(V) < 7(V') and 7(U") < 7(U)
and 7(p) =1=71(p) =1

(®) T((p) (U V) <7((p) (U ®@V")) if and only if 7(V) < 7(V') and 7(U) < 7(U’)
and 7(p) =1=17(p) =1

and this gives a set of constraints that are of the right form. The constraint A, <7(V)

are translated with a similar algorithm. [

Theorem 9.5.2 The algorithm gives a decidability criterion for the quantum typa-
bility of M, and given a valid skeleton typing judgment A > M:A, the algorithm is
polynomial in the size of skeleton typing tree of A M:A.

Proof. From Lemma 9.2.10 and Lemma 9.5.1, if M is intuitionistic-typable, then it
is quantum typable if and only if the set of constraints for 7 is consistent. This can
be done in a polynomial manner on the number of elements in the set. Indeed, an

algorithm based on tableau-system is the following:

e Set all the values to 1 and 0 according to the clauses 7(p) = .... If there is a

contradiction there, then fail.
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e For each formula 7(p) = 1= 7(p') = 1, if the value of p is 1, remove 7(p) =
1=17(p') =1 and set p’ to 1 if it is not set to 0.

e If it was, then fails.
e Continue until nothing can be done anymore, and then output success.

Since the number of constraints is polynomial in the size of the typing derivation,
and since the algorithm given in this proof is polynomial in the size of the number
of constraints, the quantum typability of a given valid M in simply-typed lambda
calculus can be decided in polynomial time on the size of the intuitionistic typing

derivation. [



Chapter 10
Conclusion and further work

In this thesis, we have defined a higher-order quantum programming language based
on a linear typed lambda calculus. Compared to the quantum lambda calculus of van
Tonder [26, 27], our language is characterized by the fact that it combines classical as
well as quantum features; thus, we have classical data types as well as quantum ones.
We also provide both unitary operations and measurements as primitive features
of our language. As the language shows, linearity constraints do not just exist at
base types, but also at higher types, due to the fact that higher-order function are
represented as closures which may in turns contain embedded quantum data. We have
shown that affine intuitionistic linear logic provides precisely the right type system
to deal with this situation.

There are many open problems for further work. An interesting question is
whether the syntax of this language can be extended to include recursion. In ad-
dition to the multiplicative types, one can wonder whether it is possible to extend the
type system to additive types, as in linear logic. Another question is to study more
carefully the relation with affine intuitionistic linear logic, and compare with a type-
system for a call-by-name reduction strategy. A very important open problem is to
find a satisfactory denotational semantics for a higher order quantum programming
language. One approach for finding such a semantics is to extend the framework of
Selinger [21] and to identify an appropriate higher-order version of the notion of a

superoperator.
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