
QPL/DCM 2008

On Quantum and Probabilistic Linear
Lambda-Calculi (Extended Abstract)

Benôıt Valiron

Department of Mathematics and Statistics
University of Ottawa

Ottawa, Canada

Abstract

In this paper we discuss a semantics for a linear higher-order probabilistic lambda-calculus in the light of
the semantics of completely positive maps for quantum computation. We analyse the set of representable
elements in this category and describe some of its properties. We then show how one can use this to derive
information on the capabilities of higher-order quantum computation compared to probabilistic computa-
tion. Finally, we derive a sound and complete semantics for a subset of the probabilistic language.

Keywords: semantics, higher-order, programming language, quantum computation, probabilistic
computation.

1 Introduction

A fully-abstract semantics for a linear quantum lambda-calculus using the category

CPM of completely positive maps is given in [6]. This denotation is not complete,

and thus fails to distinguish between maps in the category that are images of a

program and maps that are not.

A complete denotation for the first-order case is provided in [4]. Using the

subcategory of superoperators, the denotation uses the notion of norm to determine

the image of the language. However, the notion of norm fails to provide a suitable

characterization at higher-order [5].

In this paper, we restrict our study to the probabilistic fragment of the language

described in [6]. We characterize the image of the language using the notion of

polytopes, and sketch how one can use such a result to characterize the power of

quantum computation over probabilistic computation. Finally we provide a full and

complete denotational semantics for a fragment of the probabilistic linear lambda-

calculus using an idea from [3].

1 Email: bvali087@uottawa.ca

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:bvali087@uottawa.ca

Valiron

2 The Linear Quantum Lambda-Calculus

We briefly recall the linear typed lambda calculus for quantum computation defined

in [6]. The terms and the types are respectively the following:

M,N,P ::= x | λx.M | MN | 〈M,N〉 | ∗ | Ω |
let 〈x, y〉 = M in N | let ∗ = M in N |
if P then M else N | 0 | 1 |
meas | new | U,

A,B ::= A ⊗ B | ⊤ | A ⊸ B | bit | qbit .

where x ranges over term variables. We remind the reader that Ω corresponds to the

diverging term and we refer him to [6] for the definition of the typing judgements.

The language is interpreted into the category CPM of completely positive

maps [4]. The types are interpreted in the following way:

[[bit]] = 1, 1 [[qbit]] = 2

[[A ⊗ B]] = [[A ⊸ B]] = [[A]] ⊗ [[B]].

The booleans 0 and 1 are [[0]] = (1, 0) ∈ C
2 and [[1]] = (0, 1) ∈ C

2. The operations

of creation and of measurements of a quantum bit are

[[new]] : [[bit]] −→ [[qbit]]

(a, b) 7−→
(

a 0
0 b

)

,

[[meas]] : [[qbit]] −→ [[bit]]
(

a b
c d

)

7−→ (a, d).

Example 2.1 It is possible to simulate a fair toss-coin using the language:

meas(H(new 0)) : ⊤ ⊸ bit , where H corresponds to the Hadamard gate. The

interpretation of this term is (1
2 , 1

2). Using a similar technique (and using the term

Ω), it is possible to get a term simulating an unfair coin with denotation (a, b) where

a, b > 0 and a + b 6 1.

3 A Probabilistic Linear Lambda Calculus

We can modify the language of Section 2 to get a probabilistic language. For this,

we only need to remove the constants meas ,new and U . In order to retain the

probabilistic effect of the measurement, we replace them with a set of constants

c(a), one for each pair of real numbers 0 6 a 6 1. The meaning of the term c(a) is

“the boolean that is of value 1 with probability a and 0 with probability (1 − a)”.

The types are modified by removing the type qbit . We are left with the following

terms and types:

M,N,P ::= x | λx.M | MN | 〈M,N〉 | ∗ | Ω |
let 〈x, y〉 = M in N | let ∗ = M in N |
if P then M else NN | c(a) | 0 | 1,

A,B ::= A ⊗ B | ⊤ | A ⊸ B | bit | .

2

Valiron

In this context, the semantics in CPM of a term M is a completely positive map

from vectors of C
m to vectors of C

n for some natural numbers n and m. The result

of [6] extends to this case and the semantics is fully abstract.

4 Interpretation of the Bell’s Inequalities

The Bell’s experiment [1] is the following. Consider a quantum machine that max-

imally entangles two quantum bits A and B

|φAB〉 =
1√
2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉)

and sends qubit A to Alice and qubit B to Bob. Suppose that they can indepen-

dently choose one of the following three bases {a, b, c} for measuring their quantum

bits:

|0a〉 = |0〉, |0b〉 =
1

2
|0〉 +

√
3

2
|1〉, |0c〉 =

1

2
|0〉 −

√
3

2
|1〉,

|1a〉 = |1〉 |1b〉 =

√
3

2
|0〉 − 1

2
|1〉, |1c〉 =

√
3

2
|0〉 +

1

2
|1〉.

The question is to compute the probability of obtaining the same output when

measuring A and B with respect to two different bases.

One can interpret this experiment in the context of higher-order quantum com-

putation. First, the machine entangles two quantum bits: It produces a map EPR

computing the EPR state:

⊤ (new 1)⊗(new 0)−−−−−−−−−−→ qbit ⊗ qbit
H⊗id−−−→ qbit ⊗ qbit

Nc−−→ qbit ⊗ qbit
id⊗N−−−→ qbit ⊗ qbit .

Note that we consider the tensor ⊗ to consist of all possible entangled pairs. In

that sense, we can write the type of EPR as being ⊤ → qbit ⊗ qbit .

Then Alice and Bob take each one qubit, choose a basis, and measure: the

measurement they perform is then a function f : qbit ⊗ trit → bit , where trit =

⊤⊕⊤⊕⊤. One can curry this function into f ′ : qbit → (trit ⊸ bit).

The algorithm is the composition

⊤ EPR−−−→ qbit⊗qbit
f
′⊗f

′

−−−→ (trit ⊸ bit)⊗(trit ⊸ bit),

and produces a term of type (trit ⊸ bit) ⊗ (trit ⊸ bit). This type is classical, and

one can wonder whether the denotation of this term is the denotation of a term in

the probabilistic linear calculus. The Bell’s inequalities precisely tell us that it is

not the case.

In the remainder of this paper, we shall develop a methodology for determin-

ing the vectors of [[A]] that are representable by a term in the probabilistic linear

calculus, for any classical type A (that is, not containing qbit).

3

Valiron

[[c(a)]] → [[if c(a) then 1 else 0]]

[[M(if c(a) then N1 else N2)]] → [[if c(a) then MN1 else MN2]]

[[〈M, if c(a) then N1 else N2〉]] → [[if c(a) then 〈M,N1〉 else 〈M,N2〉]]
[[λx.if c(a) then N1 else N2]] → [[if c(a) then λx.N1 else λx.N2]]

[[if (if c(a) then M else N) then P else Q]] →
[[if c(a) then if M then P else Q else if N then P else Q]]

Table 1
Rewriting rules for the if -term.

5 Factorization of the Probabilistic Calculus

As in [2], a program written in the probabilistic linear lambda-calculus of Section 3

can be “factored” into a probabilistic sum of deterministic programs. What we

mean by this is that the denotation of any valid typing judgement ∆ ⊢ M : A can

be re-written as a probabilistic sum

[[∆ ⊢ M : A]] =
∑

i

αi[[∆ ⊢ Ni : A]]

where for all i, αi > 0,
∑

i αi 6 1, and where Ni does not contain any constant

term c(a).

The idea of the proof is the following: first,

[[∆ ⊢ if c(a) then M else N : A]] = a[[∆ ⊢ M : A]] + (1 − a)[[∆ ⊢ N : A]].

Thus for the result to be true, one needs to be able to send a term M containing a

constant term c(a) to a term of the form if c(a)thenM1elseM2 with same denotation,

where M1 and M2 satisfy some invariant. Since the language is linear, it is possible

to write a rewriting system as in Table 1, where terms keep their denotation along

the rewriting.

6 Interpretation as Polytopes

The deterministic terms (i.e. the ones with no occurrence of c(a)) share a special

property:

Proposition 6.1 Given a typing context ∆ and a type A, there is a finite number

of deterministic terms Ni (up to alpha-equivalence) such that ∆ ⊢ Ni : A.

This proposition comes from the fact that the language is linear: one can enu-

merate all the possible (CUT-free) typing derivations. One can go one step further:

Proposition 6.2 Any deterministic closed term of type A has a denotation of the

form (xi
1, . . . , x

i
n) ∈ [[A]], where for all j, xi

j is either 0 or 1.

It allows us to state the following theorem:

4

Valiron

Theorem 6.3 In the set [[A]], the subset of vectors representing linear probabilistic

programs of type A is a convex 0-1-polytope (i.e. whose vertexes are of the form

(x1, . . . , xn) ∈ [[A]], where, for all i, xi is either 0 or 1). 2

A few examples are given below:

(i) The deterministic closed terms of type bit are Ω, 0 and 1. That is, the polytope

of admissible vectors is spawn by (0, 0), (1, 0) and (0, 1).

(ii) The deterministic closed terms of type bit ⊸ ⊤ are Ω, λx.(if x then ∗ else Ω),

λx.(if x then Ω else ∗) and λx.(if x then ∗ else ∗). That is, the polytope of

admissible vectors is spawn by (0, 0), (0, 1), (1, 0 and (1, 1).

(iii) The deterministic closed terms of type (bit⊸⊤)⊸⊤ are Ω, λf.(let ∗ = f0 in ∗)
and λf.(let ∗ = f1 in ∗). That is, the polytope of admissible vectors is spawn

by (0, 0), (1, 0) and (0, 1).

(iv) The Bell’s algorithm described in Section 4 has for interpretation a vector in

[[(trit ⊸ bit) ⊗ (trit ⊸ bit)]] = C
3×2×3×2 = C

64. The Bell’s inequalities carve

out the polytope of representable elements in this space and state that the

vector does not belong to it.

7 Polytopes are not Compositional

The naive idea to develop a full and complete semantics for the probabilistic linear

lambda-calculus is the following: consider a category whose objects are polytopes

and whose maps are CPM maps sending polytopes into polytopes. Then interpret

the language in this category.

It turns out that this does not work. Indeed, if it were the case, the identity

map C
2 → C

2 should be represented by a program

x : (bit ⊸ ⊤) ⊸ ⊤ ⊢ M : bit .

However, the only deterministic closed terms corresponding to ((bit⊸⊤)⊸⊤)⊸bit

are of the form λf.(let ∗ = f(λx.if x then a else b) in c) where c spans {0, 1} and

where a and b span {∗,Ω}. The corresponding vertexes are

(0, 0, 0, 0), (1, 0, 0, 0), (1, 0, 1, 0), (0, 0, 1, 0)

(0, 1, 0, 1), (0, 1, 0, 0), (0, 0, 0, 1).

The identity map corresponds to the vector (1, 0, 0, 1). The best one can do is to

produce 1
2 (1, 0, 0, 1) by using a probabilistic distribution of the vertexes.

Thus, although polytopes provide a validating tool, allowing us to check, for

example, that the Bell’s experiment is not probabilistically representable, they are

not enough to give a compositional semantics for the probabilistic language.

5

Valiron

8 Toward a Full and Complete Semantics for the Prob-
abilistic Linear Calculus

The polytopes constructed are convex sets containing the origin. Thus each one

defines a norm. We extend this idea of norm following the work of [3], and define

what we call linear Kripke logical relations: instead of considering the norm of a

single vector, we consider the norm of a tuple of vectors.

8.1 A Toy Language

Consider the following reduced version of the probabilistic linear lambda-calculus:

M,N ::= xA | ΩA | c(µ) | λxA.M | MN | if P then M else N,

A,B ::= bit | A ⊸ B,

where 0 6 µ 6 1. We are going to build a full and complete semantics for this

language.

8.2 Linear Kripke Logical Relations

Consider a small category of sets C with the product as a monoidal structure,

containing the object ⊤ = {⋆}. We define a logical relation over each object w of C
as a norm || − ||wA on tuples (xi)i∈w where xi ∈ [[A]] for all i ∈ w.

The relation at ground type must satisfy the following compatibility property:

if f : v → w is a map in C, then

||(xi)i∈w||wbit 6 1 → ||(xf(i))i∈v||vbit 6 1.

Also, still at ground type bit , the norm should verify the norm axioms:

||(xi + yi)i||wbit 6 ||(xi)i||wbit + ||(yi)i||wbit ,
||(xi)i||wbit > 0,

||(λxi)i||wbit = |λ|||(xi)i||wbit ,
||(xi)i||wbit = 0 iff ∀i xi = 0.

Finally, one should have ||((a, b))||⊤bit = |a| + |b| We extend the relation for higher

types as follows: ||(gj)j∈w||wA⊸B is defined as

max

(

||(gf(j)(xi))j⊗i∈w′⊗v||w
′⊗v

B

∣

∣

∣

∣

∣

f : w′ → w ∈ C,

(xi)i∈v ∈ [[A]]when||(xi)i∈v||vA 6 1

)

.

We interpret (gf(j)(xi))j⊗i∈w′⊗v as the tuple (h(k))k∈w′⊗v where h is the map

w′ ⊗ v
f⊗id−−−→ w ⊗ v

g⊗x−−→ [[A ⊸ B]] ⊗ [[A]]
ǫA,B−−−→ [[B]].

We write ||x||A for ||(x)||⊤A. We call (|| − ||wA)w∈|C|,A∈Type a norm with varying arity.

6

Valiron

Lemma 8.1 given w ∈ |C| and a type A, the norm || − ||wA verifies the compatibility

property and the norm axioms. 2

8.3 Soundness

The soundness result states that the denotation of a closed term has indeed a norm

smaller or equal to 1. The proof follows the idea developed in [3].

Definition 8.2 We define the notion of extended environment as a pair (φ, ρ) of

partial maps, where φ : Var → |C| and where ρ is a map that assigns to a variable

xA a tuple (xi)i∈φ(xA), with xi ∈ [[A]]. If ∆ = {x1 : A1, . . . , xn : An}, we write φ(∆)

in place of φ(x1) ⊗ · · · ⊗ φ(xn).

Definition 8.3 We define the extended interpretation of a typing judgement as a

tuple [[x1 : A1, . . . , xn : An ⊢ M : A]]ρ,φ = (xi)i∈φ(x1)⊗···⊗φ(xn) where xi ∈ [[A]] for all

indices i, and where the domain of ρ and φ is the set {x1, . . . , xn}. We define this

tuple as follows. First,

[[∆ ⊢ ΩB : B]]ρ,φ = (0)i∈φ(∆),

[[⊢ c(µ) : bit]]ρ,φ = ((1 − µ, µ)),

[[x : A ⊢ xA : A]]ρ,φ = ρ(xA).

Then, if [[∆, x : A ⊢ M : B]]ρ[x 7→(a)],φ[x 7→⊤] = (ci(a))i∈φ(∆)⊗⊤, we have

[[∆ ⊢ λxA.M : A ⊸ B]]ρ,φ = (ci)i∈φ(∆).

If [[∆1 ⊢ M : A ⊸ B]]ρ1,φ1
= (gi)i∈φ1(∆1) and [[∆2 ⊢ N : A]]ρ2,φ2

= (xj)j∈φ2(∆2), then

[[∆1,∆2 ⊢ MN : B]]ρ1∪ρ2,φ1∪φ2
= (gi(xj))i⊗j∈φ1(∆1)⊗φ2(∆2).

Finally, if

[[∆1 ⊢ P : bit]]ρ1,φ1
= (ai, bi)i∈φ1(∆1),

[[∆2 ⊢ M : A]]ρ2,φ2
= (gj)j∈φ2(∆2),

[[∆2 ⊢ N : A]]ρ2,φ2
= (hj)j∈φ2(∆2),

we have

[[∆1,∆2 ⊢ if P then M else N : A]]ρ1∪ρ2,φ1∪φ2
= (bigj + aihj)i⊗j∈φ1(∆1)⊗φ2(∆2).

Lemma 8.4 Given an environment ρ, let φ̄ be the constant map of value {⋆}
and let ρ̄ be the map assigning (ρ(xA)) to xA. Then the extended interpretation

[[∆ ⊢ M : A]]ρ̄,φ̄ = ([[∆ ⊢ M : A]]ρ). 2

Lemma 8.5 Suppose v ∈ |C| and (ai)i∈v is a tuple of elements of [[A]]. Suppose

that for all i ∈ v, [[∆, x : A ⊢ M : B]]ρ∪{x 7→(ai)},φ∪{x 7→⊤} = (bi
j)j∈φ(∆). Then

[[∆, x : A ⊢ M : B]]ρ∪{x 7→(ai)i∈v},φ∪{x 7→v} = (bi
j)j⊗i∈φ(∆)⊗v.

7

Valiron

Proof. By structural induction on the typing judgement. 2

Corollary 8.6 If [[∆ ⊢ λxA.M : A ⊸ B]]ρ,φ = (gj)j∈φ(∆) and if (ai)i∈v for some

v ∈ |C| is such that ai ∈ [[A]] for all i, then

(gj(ai))j⊗i∈φ(∆)⊗v = [[∆, x : A ⊢ M : B]]ρ[xA 7→(ai)i∈v],φ[xA 7→v].

Proof. Using the definition and Lemma 8.5. 2

Lemma 8.7 (Soundness) For all closed term M : A, ||[[M]]||A 6 1.

Proof (Sketch) We prove by structural induction that for typing judgements

x1 : A1, . . . , xn : An ⊢ M : B, for each extended environment (φ, ρ) such that

||ρ(xi)||φ(xi)
Ai

6 1, the norm

||[[x1 : A1, . . . , xn : An ⊢ M : B]]ρ,φ||φ(x1)⊗···⊗φ(xn)

B
6 1.

The difficult case is the λ-abstraction, and it is taken care of using Corollary 8.6

and Lemma 8.1. The desired result is obtained using Lemma 8.4. 2

8.4 Completeness

The completeness result is obtained by choosing a carefully crafted category C.

For each type A, denote with BA the canonical basis of [[A]]. When considering

the set BA, we use the implicit order (1, . . . , 0), . . . , (0, . . . , 1). We extend the order

on BA1
× · · · × BAn using the lexicographic convention.

Definition 8.8 Define a category C as follows: objects are products BA1
×· · ·×BAn ,

and arrows are the identities on objects.

Definition 8.9 Let UA1,...,An be the set of tuples

{

(

[[M]](a1) · · · (an)
)

(a1,...,an)∈BA1
×···×BAn

∣

∣ ⊢ M : A1 ⊸ · · · ⊸ An ⊸ bit
}

Lemma 8.10 The set UA1,...,An is convex, and its interior contains the origin.

Proof. The convexity is shown using the denotation of the if and of the Ω term.

The fact that the origin lies in the interior comes from the correspondence between

first-order and higher-order types [6]. 2

Lemma 8.11 Consider the tuple (xi)i∈BC1
×···×BCk

, where for all tuple i, xi ∈
[[A1 ⊸ · · · ⊸ An ⊸ B]]. Then

∀a ∈ BA1
× · · · × BAn , xi(a1) · · · (an) = (xi)a1⊗···⊗an ,

the coordinate of xi at a1 ⊗ · · · ⊗ an. Moreover,

||(xi(a1) · · · (an))(a1,...,an)||
BC1

×···×BCk
×BA1

×···×BAn

B = ||(xi)i||
BC1

×···×BCk

A1⊸···⊸An⊸B

2

8

Valiron

Definition 8.12 Define the norm with varying arity (|| − ||wA)w∈|C|,A∈Type at ground

types as follows: the unit ball of || − ||BA1
×···×BAn

bit is UA1,...,An .

Lemma 8.13 (Completeness) Given x ∈ [[A]] such that ||(x)||A 6 1, there exists

a closed term M such that [[M]] = x. 2

Theorem 8.14 x ∈ [[A]] is representable if and only if for all norm with varying

arity (|| − ||wA)w∈|C|,A∈Type, the norm ||(x)|| 6 1. 2

9 Conclusion

We restricted the linear quantum lambda-calculus described in [6] to probabilistic

effects, and we interpreted the Bell’s inequalities in the context of higher-order

computation. We then generalized the problem and sketched a method for answering

such generalizations using convex polytopes.

The polytope interpretation does not provide a compositional semantics. How-

ever, we drafted a compositional full and complete semantics for a fragment of the

probabilistic linear lambda-calculus.

10 Acknowledgements

I would like to thank Peter Selinger for fruitful discussions. In particular, Sections 4

and 7 are his ideas.

References

[1] Bell, J. S., On the Einstein Podolsky Rosen paradox, Physics 1 (1964), pp. 195–200.

[2] Danos, V. and R. S. Harmer, Probabilistic game semantics, ACM Transactional on Computational Logic
3 (2002), pp. 359–382.

[3] Jung, A. and J. Tiuryn, A new characterization of lambda definability, in: Proceedings of TLCA’93,
Lecture Notes in Computer Science 664, 1993, pp. 245–257.

[4] Selinger, P., Towards a quantum programming language, Mathematical Structures in Computer Science
14 (2004), pp. 527–586.

[5] Selinger, P., Towards a semantics for higher-order quantum computation, in: P. Selinger, editor,
Proceedings of QPL’04, TUCS General Publication No 33 (2004), pp. 127–143.

[6] Selinger, P. and B. Valiron, On a fully abstract model for a quantum linear functional language, in:
P. Selinger, editor, Preliminary proceedings of QPL’06, 2006, pp. 103–115.

9

	Introduction
	The Linear Quantum Lambda-Calculus
	A Probabilistic Linear Lambda Calculus
	Interpretation of the Bell's Inequalities
	Factorization of the Probabilistic Calculus
	Interpretation as Polytopes
	Polytopes are not Compositional
	Toward a Full and Complete Semantics for the Probabilistic Linear Calculus
	A Toy Language
	Linear Kripke Logical Relations
	Soundness
	Completeness

	Conclusion
	Acknowledgements
	References

